
Toga Documentation
Release 0.4.2

Russell Keith-Magee

Feb 06, 2024

CONTENTS

1 Table of contents 3
1.1 Tutorial . 3
1.2 How-to guides . 3
1.3 Background . 3
1.4 Reference . 3

2 Community 5
2.1 Tutorials . 5
2.2 How-to Guides . 24
2.3 Reference . 42
2.4 Background . 211

Python Module Index 231

Index 233

i

ii

Toga Documentation, Release 0.4.2

Toga is a Python native, OS native, cross platform GUI toolkit. Toga consists of a library of base components with a
shared interface to simplify platform-agnostic GUI development.

Toga is available on macOS, Windows, Linux (GTK), Android, iOS, and for single-page web apps.

macOS

Linux

Windows

CONTENTS 1

Toga Documentation, Release 0.4.2

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Tutorial

Get started with a hands-on introduction to Toga for beginners.

1.2 How-to guides

Guides and recipes for common problems and tasks.

1.3 Background

Explanation and discussion of key topics and concepts.

1.4 Reference

Technical reference - commands, modules, classes, methods.

3

Toga Documentation, Release 0.4.2

4 Chapter 1. Table of contents

CHAPTER

TWO

COMMUNITY

Toga is part of the BeeWare suite. You can talk to the community through:

• @beeware@fosstodon.org on Mastodon

• Discord

• The Toga Github Discussions forum

We foster a welcoming and respectful community as described in our BeeWare Community Code of Conduct.

2.1 Tutorials

Note: Is this the tutorial you’re looking for?

If this is your first time using BeeWare, we suggestion you start with the BeeWare tutorial. This tutorial only covers
BeeWare’s GUI toolkit, Toga, and doesn’t cover any of the details of getting your code running on specific hardware
platforms. Once you’ve completed the BeeWare tutorial, this tutorial will introduce more details about Toga’s capabil-
ities as a GUI toolkit.

2.1.1 Your first Toga app

In this example, we’re going to build a desktop app with a single button, that prints to the console when you press the
button.

Set up your development environment

If you haven’t got Python 3 installed, you can do so via the official installer, or using your operating system’s package
manager.

The recommended way of setting up your development environment for Toga is to install a virtual environment, install
the required dependencies and start coding. To set up a virtual environment, open a fresh terminal session, and run:

macOS

Linux

Windows

5

https://beeware.org/
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/
https://github.com/beeware/toga/discussions
https://beeware.org/community/behavior/
https://docs.beeware.org
https://www.python.org/downloads

Toga Documentation, Release 0.4.2

$ mkdir toga-tutorial
$ cd toga-tutorial
$ python3 -m venv venv
$ source venv/bin/activate

$ mkdir toga-tutorial
$ cd toga-tutorial
$ python3 -m venv venv
$ source venv/bin/activate

C:\...>mkdir toga-tutorial
C:\...>cd toga-tutorial
C:\...>py -m venv venv
C:\...>venv\Scripts\activate

Your prompt should now have a (venv) prefix in front of it.

Next, install Toga into your virtual environment:

macOS

Linux

Windows

(venv) $ python -m pip install toga

Before you install Toga, you’ll need to install some system packages.

These instructions are different on almost every version of Linux and Unix; here are some of the common alternatives:

Ubuntu 18.04+ / Debian 10+

(venv) $ sudo apt update
(venv) $ sudo apt install pkg-config python3-dev libgirepository1.0-dev libcairo2-dev␣
→˓gir1.2-webkit2-4.0 libcanberra-gtk3-module

Fedora

(venv) $ sudo dnf install pkg-config python3-devel gobject-introspection-devel cairo-
→˓gobject-devel webkit2gtk3 libcanberra-gtk3

Arch / Manjaro

(venv) $ sudo pacman -Syu git pkgconf gobject-introspection cairo webkit2gtk libcanberra

FreeBSD

(venv) $ sudo pkg update
(venv) $ sudo pkg install gobject-introspection cairo webkit2-gtk3 libcanberra-gtk3

If you’re not using one of these, you’ll need to work out how to install the developer libraries for python3, cairo, and
gobject-introspection (and please let us know so we can improve this documentation!)

Then, install Toga:

6 Chapter 2. Community

Toga Documentation, Release 0.4.2

(venv) $ python -m pip install toga

If you get an error when installing Toga, please ensure that you have fully installed all the platform prerequisites.

Confirm that your system meets the Windows prerequisites; then run:

(venv) C:\...>python -m pip install toga

After a successful installation of Toga you are ready to get coding.

Write the app

Create a new file called helloworld.py and add the following code for the “Hello world” app:

import toga

def button_handler(widget):
print("hello")

def build(app):
box = toga.Box()

button = toga.Button("Hello world", on_press=button_handler)
button.style.padding = 50
button.style.flex = 1
box.add(button)

return box

def main():
return toga.App("First App", "org.beeware.toga.tutorial", startup=build)

if __name__ == "__main__":
main().main_loop()

Let’s walk through this one line at a time.

The code starts with imports. First, we import toga:

import toga

Then we set up a handler, which is a wrapper around behavior that we want to activate when the button is pressed. A
handler is just a function. The function takes the widget that was activated as the first argument; depending on the type
of event that is being handled, other arguments may also be provided. In the case of a simple button press, however,
there are no extra arguments:

def button_handler(widget):
print("hello")

2.1. Tutorials 7

Toga Documentation, Release 0.4.2

When the app gets instantiated (in main(), discussed below), Toga will create a window with a menu. We need to
provide a method that tells Toga what content to display in the window. The method can be named anything, it just
needs to accept an app instance:

def build(app):

We want to put a button in the window. However, unless we want the button to fill the entire app window, we can’t just
put the button into the app window. Instead, we need create a box, and put the button in the box.

A box is an object that can be used to hold multiple widgets, and to define padding around widgets. So, we define a
box:

box = toga.Box()

We can then define a button. When we create the button, we can set the button text, and we also set the behavior that
we want to invoke when the button is pressed, referencing the handler that we defined earlier:

button = toga.Button("Hello world", on_press=button_handler)

Now we have to define how the button will appear in the window. By default, Toga uses a style algorithm called Pack,
which is a bit like “CSS-lite”. We can set style properties of the button:

button.style.padding = 50

What we’ve done here is say that the button will have a padding of 50 pixels on all sides. If we wanted to define padding
of 20 pixels on top of the button, we could have defined padding_top = 20, or we could have specified the padding
= (20, 50, 50, 50).

Now we will make the button take up all the available width:

button.style.flex = 1

The flex attribute specifies how an element is sized with respect to other elements along its direction. The default
direction is row (horizontal) and since the button is the only element here, it will take up the whole width. Check out
style docs for more information on how to use the flex attribute.

The next step is to add the button to the box:

box.add(button)

The button has a default height, defined by the way that the underlying platform draws buttons. As a result, this means
we’ll see a single button in the app window that stretches to the width of the screen, but has a 50 pixel space surrounding
it.

Now we’ve set up the box, we return the outer box that holds all the UI content. This box will be the content of the
app’s main window:

return box

Lastly, we instantiate the app itself. The app is a high level container representing the executable. The app has a name
and a unique identifier. The identifier is used when registering any app-specific system resources. By convention, the
identifier is a “reversed domain name”. The app also accepts our method defining the main window contents. We wrap
this creation process into a method called main(), which returns a new instance of our application:

def main():
return toga.App("First App", "org.beeware.toga.tutorial", startup=build)

8 Chapter 2. Community

https://toga.readthedocs.io/en/latest/reference/style/pack.html#flex

Toga Documentation, Release 0.4.2

The entry point for the project then needs to instantiate this entry point and start the main app loop. The call to
main_loop() is a blocking call; it won’t return until you quit the main app:

if __name__ == "__main__":
main().main_loop()

And that’s it! Save this script as helloworld.py, and you’re ready to go.

Running the app

The app acts as a Python module, which means you need to run it in a different manner than running a regular Python
script: You need to specify the -m flag and not include the .py extension for the script name.

Here is the command to run for your platform from your working directory:

macOS

Linux

Windows

(venv) $ python -m helloworld

(venv) $ python -m helloworld

(venv) C:\...>python -m helloworld

This should pop up a window with a button:

2.1. Tutorials 9

Toga Documentation, Release 0.4.2

If you click on the button, you should see messages appear in the console. Even though we didn’t define anything about
menus, the app will have default menu entries to quit the app, and an About page. The keyboard bindings to quit the
app, plus the “close” button on the window will also work as expected. The app will have a default Toga icon (a picture
of Tiberius the yak).

Troubleshooting issues

Occasionally you might run into issues running Toga on your computer.

Before you run the app, you’ll need to install toga. Although you can install toga by just running:

$ python -m pip install toga

We strongly suggest that you don’t do this. We’d suggest creating a virtual environment first, and installing toga in that
virtual environment as directed at the top of this guide.

Once you’ve got Toga installed, you can run your script:

(venv) $ python -m helloworld

10 Chapter 2. Community

https://docs.python-guide.org/dev/virtualenvs/

Toga Documentation, Release 0.4.2

2.1.2 A slightly less toy example

Most applications require a little more than a button on a page. Lets build a slightly more complex example - a Fahren-
heit to Celsius converter:

Here’s the source code:

import toga
from toga.style.pack import COLUMN, LEFT, RIGHT, ROW, Pack

def build(app):
c_box = toga.Box()
f_box = toga.Box()
box = toga.Box()

c_input = toga.TextInput(readonly=True)
f_input = toga.TextInput()

c_label = toga.Label("Celsius", style=Pack(text_align=LEFT))
f_label = toga.Label("Fahrenheit", style=Pack(text_align=LEFT))
join_label = toga.Label("is equivalent to", style=Pack(text_align=RIGHT))

def calculate(widget):
try:

c_input.value = (float(f_input.value) - 32.0) * 5.0 / 9.0
except ValueError:

c_input.value = "???"

button = toga.Button("Calculate", on_press=calculate)

f_box.add(f_input)
f_box.add(f_label)

c_box.add(join_label)
c_box.add(c_input)
c_box.add(c_label)

box.add(f_box)
(continues on next page)

2.1. Tutorials 11

Toga Documentation, Release 0.4.2

(continued from previous page)

box.add(c_box)
box.add(button)

box.style.update(direction=COLUMN, padding=10)
f_box.style.update(direction=ROW, padding=5)
c_box.style.update(direction=ROW, padding=5)

c_input.style.update(flex=1)
f_input.style.update(flex=1, padding_left=210)
c_label.style.update(width=100, padding_left=10)
f_label.style.update(width=100, padding_left=10)
join_label.style.update(width=200, padding_right=10)

button.style.update(padding=15)

return box

def main():
return toga.App("Temperature Converter", "org.beeware.toga.tutorial", startup=build)

if __name__ == "__main__":
main().main_loop()

This example shows off some more features of Toga’s Pack style engine. In this example app, we’ve set up an outer box
that stacks vertically; inside that box, we’ve put 2 horizontal boxes and a button.

Since there’s no width styling on the horizontal boxes, they’ll try to fit the widgets they contain into the available space.
The TextInput widgets have a style of flex=1, but the Label widgets have a fixed width; as a result, the TextInput
widgets will be stretched to fit the available horizontal space. The margin and padding terms then ensure that the
widgets will be aligned vertically and horizontally.

2.1.3 You put the box inside another box. . .

If you’ve done any GUI programming before, you will know that one of the biggest problems that any widget toolkit
solves is how to put widgets on the screen in the right place. Different widget toolkits use different approaches -
constraints, packing models, and grid-based models are all common. Toga’s Pack style engine borrows heavily from
an approach that is new for widget toolkits, but well proven in computing: Cascading Style Sheets (CSS).

If you’ve done any design for the web, you will have come across CSS before as the mechanism that you use to lay out
HTML on a web page. Although this is the reason CSS was developed, CSS itself is a general set of rules for laying
out any “boxes” that are structured in a tree-like hierarchy. GUI widgets are an example of one such structure.

To see how this works in practice, lets look at a more complex example, involving layouts, scrollers, and containers
inside other containers:

12 Chapter 2. Community

Toga Documentation, Release 0.4.2

Here’s the source code:

import toga
from toga.style.pack import COLUMN, Pack

def button_handler(widget):
print("button handler")
for i in range(0, 10):

print("hello", i)
yield 1

print("done", i)

def action0(widget):
print("action 0")

def action1(widget):
print("action 1")

(continues on next page)

2.1. Tutorials 13

Toga Documentation, Release 0.4.2

(continued from previous page)

def action2(widget):
print("action 2")

def action3(widget):
print("action 3")

def action5(widget):
print("action 5")

def action6(widget):
print("action 6")

class Tutorial2App(toga.App):
def startup(self):

brutus_icon = "icons/brutus"
cricket_icon = "icons/cricket-72.png"

data = [("root%s" % i, "value %s" % i) for i in range(1, 100)]

left_container = toga.Table(headings=["Hello", "World"], data=data)

right_content = toga.Box(style=Pack(direction=COLUMN, padding_top=50))

for b in range(0, 10):
right_content.add(

toga.Button(
"Hello world %s" % b,
on_press=button_handler,
style=Pack(width=200, padding=20),

)
)

right_container = toga.ScrollContainer(horizontal=False)

right_container.content = right_content

split = toga.SplitContainer()

The content of the split container can be specified as a simple list:
split.content = [left_container, right_container]
but you can also specify "weight" with each content item, which will
set an initial size of the columns to make a "heavy" column wider than
a narrower one. In this example, the right container will be twice
as wide as the left one.
split.content = [(left_container, 1), (right_container, 2)]

Create a "Things" menu group to contain some of the commands.
No explicit ordering is provided on the group, so it will appear

(continues on next page)

14 Chapter 2. Community

Toga Documentation, Release 0.4.2

(continued from previous page)

after application-level menus, but *before* the Command group.
Items in the Things group are not explicitly ordered either, so they
will default to alphabetical ordering within the group.
things = toga.Group("Things")
cmd0 = toga.Command(

action0,
text="Action 0",
tooltip="Perform action 0",
icon=brutus_icon,
group=things,

)
cmd1 = toga.Command(

action1,
text="Action 1",
tooltip="Perform action 1",
icon=brutus_icon,
group=things,

)
cmd2 = toga.Command(

action2,
text="Action 2",
tooltip="Perform action 2",
icon=toga.Icon.DEFAULT_ICON,
group=things,

)

Commands without an explicit group end up in the "Commands" group.
The items have an explicit ordering that overrides the default
alphabetical ordering
cmd3 = toga.Command(

action3,
text="Action 3",
tooltip="Perform action 3",
shortcut=toga.Key.MOD_1 + "k",
icon=cricket_icon,
order=3,

)

Define a submenu inside the Commands group.
The submenu group has an order that places it in the parent menu.
The items have an explicit ordering that overrides the default
alphabetical ordering.
sub_menu = toga.Group("Sub Menu", parent=toga.Group.COMMANDS, order=2)
cmd5 = toga.Command(

action5,
text="Action 5",
tooltip="Perform action 5",
order=2,
group=sub_menu,

)
cmd6 = toga.Command(

action6,

(continues on next page)

2.1. Tutorials 15

Toga Documentation, Release 0.4.2

(continued from previous page)

text="Action 6",
tooltip="Perform action 6",
order=1,
group=sub_menu,

)

def action4(widget):
print("CALLING Action 4")
cmd3.enabled = not cmd3.enabled

cmd4 = toga.Command(
action4,
text="Action 4",
tooltip="Perform action 4",
icon=brutus_icon,
order=1,

)

The order in which commands are added to the app or the toolbar won't
alter anything. Ordering is defined by the command definitions.
self.commands.add(cmd1, cmd0, cmd6, cmd4, cmd5, cmd3)

self.main_window = toga.MainWindow()
Command 2 has not been *explicitly* added to the app. Adding it to
a toolbar implicitly adds it to the app.
self.main_window.toolbar.add(cmd1, cmd3, cmd2, cmd4)
self.main_window.content = split

self.main_window.show()

def main():
return Tutorial2App("Tutorial 2", "org.beeware.toga.tutorial")

if __name__ == "__main__":
main().main_loop()

In order to render the icons, you will need to move the icons folder into the same directory as your app file.

Here are the Icons

In this example, we see a couple of new Toga widgets - Table, SplitContainer, and ScrollContainer. You can
also see that CSS styles can be added in the widget constructor. Lastly, you can see that windows can have toolbars.

You’ll also see that we’re not creating a toga.App directly. Instead, we’re declaring a subclass of toga.App, and
instantiating that class. This also changes the startup sequence of the app - instead of a function called build(), the
app invokes a method on the app class named startup(). This method behaves slightly differently to our build()
method - whereas previously the build() method returned the content that we wanted to put into our main window,
the startup() method is responsible for creating and showing the main window of the app.

16 Chapter 2. Community

Toga Documentation, Release 0.4.2

2.1.4 Let’s build a browser!

Although it’s possible to build complex GUI layouts, you can get a lot of functionality with very little code, utilizing
the rich components that are native on modern platforms.

So - let’s build a tool that lets our pet yak graze the web - a primitive web browser, in less than 40 lines of code!

Here’s the source code:

import toga
from toga.style.pack import CENTER, COLUMN, ROW, Pack

class Graze(toga.App):
def startup(self):

self.main_window = toga.MainWindow()

self.webview = toga.WebView(
on_webview_load=self.on_webview_loaded, style=Pack(flex=1)

)
self.url_input = toga.TextInput(

value="https://beeware.org/", style=Pack(flex=1)
)

(continues on next page)

2.1. Tutorials 17

Toga Documentation, Release 0.4.2

(continued from previous page)

box = toga.Box(
children=[

toga.Box(
children=[

self.url_input,
toga.Button(

"Go",
on_press=self.load_page,
style=Pack(width=50, padding_left=5),

),
],
style=Pack(

direction=ROW,
alignment=CENTER,
padding=5,

),
),
self.webview,

],
style=Pack(direction=COLUMN),

)

self.main_window.content = box
self.webview.url = self.url_input.value

Show the main window
self.main_window.show()

def load_page(self, widget):
self.webview.url = self.url_input.value

def on_webview_loaded(self, widget):
self.url_input.value = self.webview.url

def main():
return Graze("Graze", "org.beeware.tutorial")

if __name__ == "__main__":
main().main_loop()

In this example, you can see an application being developed as a class, rather than as a build method. You can also see
boxes defined in a declarative manner - if you don’t need to retain a reference to a particular widget, you can define a
widget inline, and pass it as an argument to a box, and it will become a child of that box.

18 Chapter 2. Community

Toga Documentation, Release 0.4.2

2.1.5 Let’s draw on a canvas!

One of the main capabilities needed to create many types of GUI applications is the ability to draw and manipulate
lines, shapes, text, and other graphics. To do this in Toga, we use the Canvas Widget.

Utilizing the Canvas is as easy as determining the drawing operations you want to perform and then creating a new
Canvas. All drawing objects that are created with one of the drawing operations are returned so that they can be modified
or removed.

1. We first define the drawing operations we want to perform in a new function:

def draw_eyes(self):
with self.canvas.fill(color=WHITE) as eye_whites:

eye_whites.arc(58, 92, 15)
eye_whites.arc(88, 92, 15, math.pi, 3 * math.pi)

Notice that we also created and used a new fill context called eye_whites. The “with” keyword that is used for the fill
operation causes everything draw using the context to be filled with a color. In this example we filled two circular eyes
with the color white.

2. Next we create a new Canvas:

self.canvas = toga.Canvas(style=Pack(flex=1))

That’s all there is to! In this example we also add our canvas to the MainWindow through use of the Box Widget:

box = toga.Box(children=[self.canvas])
self.main_window.content = box

You’ll also notice in the full example below that the drawing operations utilize contexts in addition to fill including
context, closed_path, and stroke. This reduces the repetition of commands as well as groups drawing operations so that
they can be modified together.

Here’s the source code

import math

import toga
from toga.colors import WHITE, rgb
from toga.constants import Baseline

(continues on next page)

2.1. Tutorials 19

Toga Documentation, Release 0.4.2

(continued from previous page)

from toga.fonts import SANS_SERIF
from toga.style import Pack

class StartApp(toga.App):
def startup(self):

self.main_window = toga.MainWindow(size=(150, 250))

Create empty canvas
self.canvas = toga.Canvas(

style=Pack(flex=1),
on_resize=self.on_resize,
on_press=self.on_press,

)
box = toga.Box(children=[self.canvas])

Add the content on the main window
self.main_window.content = box

Draw tiberius on the canvas
self.draw_tiberius()

Show the main window
self.main_window.show()

def fill_head(self):
with self.canvas.Fill(color=rgb(149, 119, 73)) as head_filler:

head_filler.move_to(112, 103)
head_filler.line_to(112, 113)
head_filler.ellipse(73, 114, 39, 47, 0, 0, math.pi)
head_filler.line_to(35, 84)
head_filler.arc(65, 84, 30, math.pi, 3 * math.pi / 2)
head_filler.arc(82, 84, 30, 3 * math.pi / 2, 2 * math.pi)

def stroke_head(self):
with self.canvas.Stroke(line_width=4.0) as head_stroker:

with head_stroker.ClosedPath(112, 103) as closed_head:
closed_head.line_to(112, 113)
closed_head.ellipse(73, 114, 39, 47, 0, 0, math.pi)
closed_head.line_to(35, 84)
closed_head.arc(65, 84, 30, math.pi, 3 * math.pi / 2)
closed_head.arc(82, 84, 30, 3 * math.pi / 2, 2 * math.pi)

def draw_eyes(self):
with self.canvas.Fill(color=WHITE) as eye_whites:

eye_whites.arc(58, 92, 15)
eye_whites.arc(88, 92, 15, math.pi, 3 * math.pi)

Draw eyes separately to avoid miter join
with self.canvas.Stroke(line_width=4.0) as eye_outline:

eye_outline.arc(58, 92, 15)
with self.canvas.Stroke(line_width=4.0) as eye_outline:

(continues on next page)

20 Chapter 2. Community

Toga Documentation, Release 0.4.2

(continued from previous page)

eye_outline.arc(88, 92, 15, math.pi, 3 * math.pi)

with self.canvas.Fill() as eye_pupils:
eye_pupils.arc(58, 97, 3)
eye_pupils.arc(88, 97, 3)

def draw_horns(self):
with self.canvas.Context() as r_horn:

with r_horn.Fill(color=rgb(212, 212, 212)) as r_horn_filler:
r_horn_filler.move_to(112, 99)
r_horn_filler.quadratic_curve_to(145, 65, 139, 36)
r_horn_filler.quadratic_curve_to(130, 60, 109, 75)

with r_horn.Stroke(line_width=4.0) as r_horn_stroker:
r_horn_stroker.move_to(112, 99)
r_horn_stroker.quadratic_curve_to(145, 65, 139, 36)
r_horn_stroker.quadratic_curve_to(130, 60, 109, 75)

with self.canvas.Context() as l_horn:
with l_horn.Fill(color=rgb(212, 212, 212)) as l_horn_filler:

l_horn_filler.move_to(35, 99)
l_horn_filler.quadratic_curve_to(2, 65, 6, 36)
l_horn_filler.quadratic_curve_to(17, 60, 37, 75)

with l_horn.Stroke(line_width=4.0) as l_horn_stroker:
l_horn_stroker.move_to(35, 99)
l_horn_stroker.quadratic_curve_to(2, 65, 6, 36)
l_horn_stroker.quadratic_curve_to(17, 60, 37, 75)

def draw_nostrils(self):
with self.canvas.Fill(color=rgb(212, 212, 212)) as nose_filler:

nose_filler.move_to(45, 145)
nose_filler.bezier_curve_to(51, 123, 96, 123, 102, 145)
nose_filler.ellipse(73, 114, 39, 47, 0, math.pi / 4, 3 * math.pi / 4)

with self.canvas.Fill() as nostril_filler:
nostril_filler.arc(63, 140, 3)
nostril_filler.arc(83, 140, 3)

with self.canvas.Stroke(line_width=4.0) as nose_stroker:
nose_stroker.move_to(45, 145)
nose_stroker.bezier_curve_to(51, 123, 96, 123, 102, 145)

def draw_text(self):
font = toga.Font(family=SANS_SERIF, size=20)
self.text_width, text_height = self.canvas.measure_text("Tiberius", font)

x = (150 - self.text_width) // 2
y = 175

with self.canvas.Stroke(color="REBECCAPURPLE", line_width=4.0) as rect_stroker:
self.text_border = rect_stroker.rect(

x - 5,
y - 5,
self.text_width + 10,
text_height + 10,

(continues on next page)

2.1. Tutorials 21

Toga Documentation, Release 0.4.2

(continued from previous page)

)
with self.canvas.Fill(color=rgb(149, 119, 73)) as text_filler:

self.text = text_filler.write_text("Tiberius", x, y, font, Baseline.TOP)

def draw_tiberius(self):
self.fill_head()
self.draw_eyes()
self.draw_horns()
self.draw_nostrils()
self.stroke_head()
self.draw_text()

def on_resize(self, widget, width, height, **kwargs):
On resize, center the text horizontally on the canvas. on_resize will be
called when the canvas is initially created, when the drawing objects won't
exist yet. Only attempt to reposition the text if there's context objects on
the canvas.
if widget.context:

left_pad = (width - self.text_width) // 2
self.text.x = left_pad
self.text_border.x = left_pad - 5
widget.redraw()

def on_press(self, widget, x, y, **kwargs):
self.main_window.info_dialog("Hey!", f"You poked the yak at ({x}, {y})")

def main():
return StartApp("Tutorial 4", "org.beeware.toga.tutorial")

if __name__ == "__main__":
main().main_loop()

In this example, we see a new Toga widget - Canvas.

2.1.6 Tutorial 0 - your first Toga app

In Your first Toga app, you will discover how to create a basic app and have a simple Button widget to click.

22 Chapter 2. Community

Toga Documentation, Release 0.4.2

2.1.7 Tutorial 1 - a slightly less toy example

In A slightly less toy example, you will discover how to capture basic user input using the TextInput widget and
control layout.

2.1.8 Tutorial 2 - you put the box inside another box. . .

In You put the box inside another box. . . , you will discover how to use the SplitContainer widget to display some
components, a toolbar and a table.

2.1.9 Tutorial 3 - let’s build a browser!

In Let’s build a browser!, you will discover how to use the WebView widget to display a simple browser.

2.1. Tutorials 23

Toga Documentation, Release 0.4.2

2.1.10 Tutorial 4 - let’s draw on a canvas!

In Let’s draw on a canvas!, you will discover how to use the Canvas widget to draw lines and shapes on a canvas.

2.2 How-to Guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and
assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

2.2.1 How to get started

Quickstart

Create a new virtual environment. In your virtual environment, install Toga, and then run it:

$ python -m pip install toga-demo
$ toga-demo

24 Chapter 2. Community

Toga Documentation, Release 0.4.2

This will pop up a GUI window showing the full range of widgets available to an application using Toga.

Have fun, and see the Reference to learn more about what’s going on.

2.2.2 How to contribute code to Toga

If you experience problems with Toga, log them on GitHub. If you want to contribute code, please fork the code and
submit a pull request.

Set up your development environment

First, ensure that you have Python 3 and pip installed. To do this, run:

macOS

Linux

Windows

$ python3 --version
$ pip3 --version

$ python3 --version
$ pip3 --version

C:\...>python3 --version
C:\...>pip3 --version

The recommended way of setting up your development environment for Toga is to install a virtual environment, install
the required dependencies and start coding. To set up a virtual environment, run:

macOS

Linux

Windows

$ python3 -m venv venv
$ source venv/bin/activate

$ python3 -m venv venv
$ source venv/bin/activate

C:\...>python3 -m venv venv
C:\...>venv\Scripts\activate

Your prompt should now have a (venv) prefix in front of it.

Next, install any additional dependencies for your operating system:

macOS

Linux

Windows

No additional dependencies

2.2. How-to Guides 25

https://github.com/beeware/toga/issues
https://github.com/beeware/toga
https://github.com/beeware/toga/pulls

Toga Documentation, Release 0.4.2

Ubuntu 18.04+, Debian 10+

(venv) $ sudo apt update
(venv) $ sudo apt install pkg-config python3-dev libgirepository1.0-dev libcairo2-dev␣
→˓gir1.2-webkit2-4.0 libcanberra-gtk3-module

Fedora

(venv) $ sudo dnf install pkg-config python3-devel gobject-introspection-devel cairo-
→˓gobject-devel webkit2gtk3 libcanberra-gtk3

Arch / Manjaro

(venv) $ sudo pacman -Syu git pkgconf gobject-introspection cairo webkit2gtk libcanberra

FreeBSD

(venv) $ sudo pkg update
(venv) $ sudo pkg install gobject-introspection cairo webkit2-gtk3

No additional dependencies

Next, go to the Toga page on GitHub, fork the repository into your own account, and then clone a copy of that repository
onto your computer by clicking on “Clone or Download”. If you have the GitHub desktop application installed on your
computer, you can select “Open in Desktop”; otherwise, copy the URL provided, and use it to clone using the command
line:

macOS

Linux

Windows

Fork the Toga repository, and then:

(venv) $ git clone https://github.com/<your username>/toga.git

(substituting your GitHub username)

Fork the Toga repository, and then:

(venv) $ git clone https://github.com/<your username>/toga.git

(substituting your GitHub username)

Fork the Toga repository, and then:

(venv) C:\...>git clone https://github.com/<your username>/toga.git

(substituting your GitHub username)

Now that you have the source code, you can install Toga into your development environment. The Toga source repository
contains multiple packages. Since we’re installing from source, we can’t rely on pip to resolve the dependencies to
source packages, so we have to manually install each package:

macOS

Linux

Windows

26 Chapter 2. Community

https://github.com/beeware/toga

Toga Documentation, Release 0.4.2

(venv) $ cd toga
(venv) $ pip install -e "./core[dev]" -e ./dummy -e ./cocoa

(venv) $ cd toga
(venv) $ pip install -e ./core[dev] -e ./dummy -e ./gtk

(venv) C:\...>cd toga
(venv) C:\...>pip install -e ./core[dev] -e ./dummy -e ./winforms

Toga uses a tool called Pre-Commit to identify simple issues and standardize code formatting. It does this by installing
a git hook that automatically runs a series of code linters prior to finalizing any git commit. To enable pre-commit, run:

macOS

Linux

Windows

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

(venv) C:\...>pre-commit install
pre-commit installed at .git/hooks/pre-commit

When you commit any change, pre-commit will run automatically. If there are any issues found with the commit, this
will cause your commit to fail. Where possible, pre-commit will make the changes needed to correct the problems it
has found:

macOS

Linux

Windows

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed

(continues on next page)

2.2. How-to Guides 27

https://pre-commit.com

Toga Documentation, Release 0.4.2

(continued from previous page)

isort..Passed
pyupgrade..Passed
docformatter...Passed

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

(venv) C:\...>git add some/interesting_file.py
(venv) C:\...>git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

reformatted some\interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

You can then re-add any files that were modified as a result of the pre-commit checks, and re-commit the change.

macOS

Linux

28 Chapter 2. Community

Toga Documentation, Release 0.4.2

Windows

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
[bugfix e3e0f73] Minor change
1 file changed, 4 insertions(+), 2 deletions(-)

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
[bugfix e3e0f73] Minor change
1 file changed, 4 insertions(+), 2 deletions(-)

(venv) C:\...>git add some\interesting_file.py
(venv) C:\...>git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

Now you are ready to start hacking on Toga!

2.2. How-to Guides 29

Toga Documentation, Release 0.4.2

What should I do?

Depending on your level of expertise, or areas of interest, there are a number of ways you can contribute to Toga’s code.

Fix a bug in an existing widget

Toga’s issue tracker logs the known issues with existing widgets. Any of these issues are candidates to be worked on.
This list can be filtered by platform, so you can focus on issues that affect the platforms you’re able to test on. There’s
also a filter for good first issues . These have been identified as problems that have a known cause, and we believe the
fix should be relatively simple (although we might be wrong in our analysis).

We don’t have any formal process of “claiming” or “assigning” issues; if you’re interested in a ticket, leave a comment
that says you’re working on it. If there’s an existing comment that says someone is working on the issue, and that
comment is recent, then leave a comment asking if they’re still working on the issue. If you don’t get a response in
a day or two, you can assume the issue is available. If the most recent comment is more than a few weeks old, it’s
probably safe to assume that the issue is still available to be worked on.

If an issue is particularly old (more than 6 months), it’s entirely possible that the issue has been resolved, so the first step
is to verify that you can reproduce the problem. Use the information provided in the bug report to try and reproduce the
problem. If you can’t reproduce the problem, report what you have found as a comment on the ticket, and pick another
ticket.

If a bug report has no comments from anyone other than the original reporter, the issue needs to be triaged. Triaging a
bug involves taking the information provided by the reporter, and trying to reproduce it. Again, if you can’t reproduce
the problem, report what you have found as a comment on the ticket, and pick another ticket.

If you can reproduce the problem - try to fix it! Work out what combination of core and backend-specific code is
implementing the feature, and see if you can work out what isn’t working correctly. You may need to refer to plat-
form specific documentation (e.g., the Cocoa AppKit, iOS UIKit, GTK, Winforms, Android, Shoelace or Textual API
documentation) to work out why a widget isn’t behaving as expected.

If you’re able to fix the problem, you’ll need to add tests for the core API and/or the testbed backend for that widget,
depending on whether the fix was in the core API or to the backend (or both).

Even if you can’t fix the problem, reporting anything you discover as a comment on the ticket is worthwhile. If you
can find the source of the problem, but not the fix, that knowledge will often be enough for someone who knows more
about a platform to solve the problem. Even a good reproduction case (a sample app that does nothing but reproduce
the problem) can be a huge help.

Contribute improvements to documentation

We’ve got a separate contribution guide for documentation contributions. This covers how to set up your development
environment to build Toga’s documentation, and separate ideas for what to work on.

Implement a platform native widget

If the core library already specifies an interface for a widget, but the widget isn’t implemented on your platform of
choice, implement that interface. The supported widgets by platform table can show you the widgets that are missing on
various platforms. You can also look for log messages in a running app (or the direct factory.not_implemented()
function calls that produce those log messages). At present, the Web and Textual backends have the most missing
widgets. If you have web skills, or would like to learn more about PyScript and Shoelace, the web backend could be a
good place to contribute; if you’d like to learn more about terminal applications and the or Textual API, contributing
to the Textual backend could be a good place for you to contribute.

30 Chapter 2. Community

https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Abug
https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://developer.apple.com/documentation/appkit?language=objc
https://developer.apple.com/documentation/uikit?language=objc
https://docs.gtk.org/gtk3/
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/overview?view=netdesktop-7.0
https://developer.android.com/reference
https://shoelace.style
https://textual.textualize.io
https://pyscript.net
https://shoelace.style
https://textual.textualize.io

Toga Documentation, Release 0.4.2

Alternatively, if there’s a widget that doesn’t exist, propose an interface design, and implement it for at least one plat-
form. You may find this presentation by BeeWare emeritus team member Dan Yeaw helpful. This talk gives an archi-
tectural overview of Toga, as well as providing a guide to the process of adding new widgets.

If you implement a new widget, don’t forget you’ll need to write tests for the new core API. If you’re extending an
existing widget, you may need to add a probe for the backend.

Add a new feature to an existing widget

Can you think of a feature than an existing widget should have? Propose a new API for that widget, and provide a
sample implementation. If you don’t have any ideas of your own, the Toga issue tracker has some existing feature
suggestions that you could try to implement.

Again, you’ll need to add unit tests and/or backend probes for any new features you add.

Implement an entirely new platform backend

Toga currently has support for 7 backends - but there’s room for more! In particular, we’d be interested in seeing a
Qt-based backend to support KDE-based Linux desktops.

The first steps of any new platform backend are always the same:

1. Implement enough of the Toga Application and Window classes to allow you to create an empty application
window, integrated with the Python asyncio event loop.

2. Work out how to use native platform APIs to position a widget at a specific position on the window. Most widget
frameworks will have some sort of native layout scheme; we need to replace that scheme with Toga’s layout
algorithm. If you can work out how to place a button with a fixed size at a specific position on the screen, that’s
usually sufficient.

3. Get Tutorial 0 working. This is the simple case of a single box that contains a single button. To get this tutorial
working, you’ll need to implement the factory class for your new backend so that Toga can instantiate widgets
on your new backend, and connect the Toga style applicator methods on the base widget that sets the position of
widgets on the screen.

Once you have those core features in place, you can start implementing widgets and other Toga features (like fonts,
images, and so on).

Improve the testing API for application writers

The dummy backend exists to validate that Toga’s internal API works as expected. However, we would like it to be a
useful resource for application authors as well. Testing GUI applications is a difficult task; a Dummy backend would
potentially allow an end user to write an application, and validate behavior by testing the properties of the Dummy.
Think of it as a GUI mock - but one that is baked into Toga as a framework. See if you can write a GUI app of your
own, and write a test suite that uses the Dummy backend to validate the behavior of that app.

2.2. How-to Guides 31

https://www.youtube.com/watch?v=sWt_sEZUiY8
https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Aenhancement
https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Aenhancement
https://github.com/beeware/toga/issues/1142

Toga Documentation, Release 0.4.2

Running the core test suite

Toga uses tox to manage the testing process. To run the core test suite:

macOS

Linux

Windows

(venv) $ tox -e py

(venv) $ tox -e py

(venv) C:\...>tox -e py

You should get some output indicating that tests have been run. You may see SKIPPED tests, but shouldn’t ever get
any FAIL or ERROR test results. We run our full test suite before merging every patch. If that process discovers any
problems, we don’t merge the patch. If you do find a test error or failure, either there’s something odd in your test
environment, or you’ve found an edge case that we haven’t seen before - either way, let us know!

At the end of the test output there should be a report of the coverage data that was gathered:

Name Stmts Miss Branch BrPart Cover Missing
--
TOTAL 4345 0 1040 0 100.0%

This tells us that the test suite has executed every possible branching path in the toga-core library. This isn’t a 100%
guarantee that there are no bugs, but it does mean that we’re exercising every line of code in the core API.

If you make changes to the core API, it’s possible you’ll introduce a gap in this coverage. When this happens, the
coverage report will tell you which lines aren’t being executed. For example, lets say we made a change to toga/
window.py, adding some new logic. The coverage report might look something like:

Name Stmts Miss Branch BrPart Cover Missing
--
src/toga/window.py 186 2 22 2 98.1% 211, 238-240
--
TOTAL 4345 2 1040 2 99.9%

This tells us that line 211, and lines 238-240 are not being executed by the test suite. You’ll need to add new tests (or
modify an existing test) to restore this coverage.

When you’re developing your new test, it may be helpful to run just that one test. To do this, you can pass in the name
of a specific test file (or a specific test, using pytest specifiers):

macOS

Linux

Windows

(venv) $ tox -e py -- tests/path_to_test_file/test_some_test.py

(venv) $ tox -e py -- tests/path_to_test_file/test_some_test.py

(venv) C:\...>tox -e py -- tests/path_to_test_file/test_some_test.py

32 Chapter 2. Community

https://tox.wiki/en/latest/
https://docs.pytest.org/en/latest/how-to/usage.html

Toga Documentation, Release 0.4.2

These test paths are relative to the core directory. You’ll still get a coverage report when running a part of the test suite
- but the coverage results will only report the lines of code that were executed by the specific tests you ran.

Running the testbed

The core API tests exercise toga-core - but what about the backends? To verify the behavior of the backends, Toga
has a testbed app. This app uses the core API to exercise all the behaviors that the backend APIs need to perform - but
uses an actual platform backend to implement that behavior.

To run the testbed app, install Briefcase, and run the app in developer test mode:

macOS

Linux

Windows

(venv) $ python -m pip install briefcase
(venv) $ cd testbed
(venv) $ briefcase dev --test

(venv) $ python -m pip install briefcase
(venv) $ cd testbed
(venv) $ briefcase dev --test

(venv) C:\...>python -m pip install briefcase
(venv) C:\...>cd testbed
(venv) C:\...>briefcase dev --test

This will display a Toga app window, which will flash as it performs all the GUI tests. You’ll then see a coverage report
for the code that has been executed.

If you want to run a subset of the entire test suite, Briefcase honors pytest specifiers) in the same way as the main test
suite.

The testbed app provides one additional feature that the core tests don’t have – slow mode. Slow mode runs the same
tests, but deliberately pauses for 1 second between each GUI action so that you can observe what is going on.

So - to run only the button tests in slow mode, you could run:

macOS

Linux

Windows

(venv) $ briefcase dev --test -- tests/widgets/test_button.py --slow

(venv) $ briefcase dev --test -- tests/widgets/test_button.py --slow

(venv) C:\...>briefcase dev --test -- tests/widgets/test_button.py --slow

This test will take a lot longer to run, but you’ll see the widget (Button, in this case) go through various color, format,
and size changes as the test runs. You won’t get a coverage report if you run a subset of the tests, or if you enable slow
mode.

Developer mode is useful for testing desktop platforms (Cocoa, Winforms and GTK); but if you want to test a mobile
backend, you’ll need to use briefcase run.

2.2. How-to Guides 33

https://briefcase.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/how-to/usage.html

Toga Documentation, Release 0.4.2

macOS

Linux

Windows

To run the Android test suite:

(venv) $ briefcase run android --test

To run the iOS test suite:

(venv) $ briefcase run iOS --test

To run the Android test suite:

(venv) $ briefcase run android --test

iOS tests can’t be executed on Linux.

To run the Android test suite:

(venv) C:\...>briefcase run android --test

iOS tests can’t be executed on Windows.

You can also use slow mode or pytest specifiers with briefcase run, using the same -- syntax as you used in
developer mode.

How the testbed works

The testbed works by providing a generic collection of behavioral tests on a live app, and then providing an API to
instrument the live app to verify that those behaviors have been implemented. That API is then implemented by each
backend.

The implementation of the generic behavioral tests is contained in the tests folder of the testbed app. These tests use
the public API of a widget to exercise all the corner cases of each implementation. Some of the tests are generic (for
example, setting the background color of a widget) and are shared between widgets, but each widget has its own set
of specific tests. These tests are all declared async because they need to interact with the event loop of a running
application.

Each test will make a series of calls on a widget’s public API. The public API is used to verify the behavior that an end
user would experience when programming a Toga app. The test will also make calls on the probe for the widget.

The widget probe provides a generic interface for interacting with the internals of widget, verifying that the implemen-
tation is in the correct state as a result of invoking a public API. The probes for each platform are implemented in the
tests_backend folder of each backend. For example, the Cocoa tests backend and probe implementations can be
found here.

The probe for each widget provides a way to manipulate and inspect the internals of a widget in a way that may not be
possible from a public API. For example, the Toga public API doesn’t provide a way to determine the physical size of
a widget, or interrogate the font being used to render a widget; the probe implementation does. This allows a testbed
test case to verify that a widget has been laid out correctly inside the Toga window, is drawn using the right font, and
has any other other appropriate physical properties or internal state.

The probe also provides a programmatic interface for interacting with a widget. For example, in order to test a button,
you need to be able to press that button; the probe API provides an API to simulate that press. This allows the testbed
to verify that the correct callbacks will be invoked when a button is pressed. These interactions are performed by
generating events in the GUI framework being tested.

34 Chapter 2. Community

https://github.com/beeware/toga/tree/main/testbed/tests
https://github.com/beeware/toga/tree/main/cocoa/tests_backend

Toga Documentation, Release 0.4.2

The widget probe also provides a redraw() method. GUI libraries don’t always immediately apply changes visually,
as graphical changes will often be batched so that they can be applied in a single redraw. To ensure that any visual
changes have been applied before a test asserts the properties of the app, a test case can call await probe.redraw().
This guarantees that any outstanding redraw events have been processed. These redraw() requests are also used to
implement slow mode - each redraw is turned into a 1 second sleep.

If a widget doesn’t have a probe for a given widget, the testbed should call pytest.skip() for that platform when
constructing the widget fixture (there is a skip_on_platforms() helper method in the testbed method to do this). If
a widget hasn’t implemented a specific probe method that the testbed required, it should call pytest.skip() so that
the backend knows to skip the test.

If a widget on a given backend doesn’t support a given feature, it should use pytest.xfail() (expected failure) for
the probe method testing that feature. For example, Cocoa doesn’t support setting the text color of buttons; as a result,
the Cocoa implementation of the color property of the Button probe performs an xfail describing that limitation.

Submitting a pull request

Before you submit a pull request, there’s a few bits of housekeeping to do.

Submit from a feature branch, not your main branch

Before you start working on your change, make sure you’ve created a branch. By default, when you clone your repository
fork, you’ll be checked out on your main branch. This is a direct copy of Toga’s main branch.

While you can submit a pull request from your main branch, it’s preferable if you don’t do this. If you submit a pull
request that is almost right, the core team member who reviews your pull request may be able to make the necessary
changes, rather than giving feedback asking for a minor change. However, if you submit your pull request from your
main branch, reviewers are prevented from making modifications.

Instead, you should make your changes on a feature branch. A feature branch has a simple name to identify the change
that you’ve made. For example, if you’ve found a bug in Toga’s layout algorithm, you might create a feature branch
fix-layout-bug. If your bug relates to a specific issue that has been reported, it’s also common to reference that
issue number in the branch name (e.g., fix-1234).

To create a feature branch, run:

macOS

Linux

Windows

(venv) $ git checkout -b fix-layout-bug

(venv) $ git checkout -b fix-layout-bug

(venv) C:\...>git checkout -b fix-layout-bug

Commit your changes to this branch, then push to GitHub and create a pull request.

2.2. How-to Guides 35

https://github.com/beeware/toga/blob/main/cocoa/tests_backend/widgets/button.py#L17

Toga Documentation, Release 0.4.2

Add change information for release notes

Before you submit this change as a pull request, you need to add a change note. Toga uses towncrier to automate
building release notes. To support this, every pull request needs to have a corresponding file in the changes/ directory
that provides a short description of the change implemented by the pull request.

This description should be a high level summary of the change from the perspective of the user, not a deep technical
description or implementation detail. It is distinct from a commit message - a commit message describes what has been
done so that future developers can follow the reasoning for a change; the change note is a “user facing” description.
For example, if you fix a bug caused by date handling, the commit message might read:

Modified date validation to accept US-style MM-DD-YYYY format.

The corresponding change note would read something like:

Date widgets can now accept US-style MM-DD-YYYY format.

See News Fragments for more details on the types of news fragments you can add. You can also see existing examples of
news fragments in the changes/ folder. Name the file using the number of the issue that your pull request is addressing.
When there isn’t an existing issue, you can create the pull request in two passes: First submit it without a change note
- this will fail, but will also assign a pull request number. You can then push an update to the pull request, adding the
change note with the assigned number.

It’s not just about coverage!

Although we’re always trying to improve test coverage, the task isn’t just about increasing the numerical coverage value.
Part of the task is to audit the code as you go. You could write a comprehensive set of tests for a concrete life jacket. . .
but a concrete life jacket would still be useless for the purpose it was intended!

As you develop tests and improve coverage, you should be checking that the core module is internally consistent as well.
If you notice any method names that aren’t internally consistent (e.g., something called on_select in one module, but
called on_selected in another), or where the data isn’t being handled consistently (one widget updates then refreshes,
but another widget refreshes then updates), flag it and bring it to our attention by raising a ticket. Or, if you’re confident
that you know what needs to be done, create a pull request that fixes the problem you’ve found.

One example of the type of consistency we’re looking for is described in this ticket.

Waiting for feedback

Once you’ve written your code, test, and change note, you can submit your changes as a pull request. One of the core
team will review your work, and give feedback. If any changes are requested, you can make those changes, and update
your pull request; eventually, the pull request will be accepted and merged. Congratulations, you’re a contributor to
Toga!

What next?

Rinse and repeat! If you’ve improved coverage by one line, go back and do it again for another coverage line! If you’ve
implemented a new widget, implement another widget!

Most importantly - have fun!

36 Chapter 2. Community

https://pypi.org/project/towncrier/
https://towncrier.readthedocs.io/en/stable/tutorial.html#creating-news-fragments
https://github.com/beeware/toga/issues/299

Toga Documentation, Release 0.4.2

2.2.3 Contributing to Toga’s documentation

You might have the best software in the world - but if nobody knows how to use it, what’s the point? Documentation
can always be improved - and we need need your help!

Toga’s documentation is written using Sphinx and reStructuredText. We aim to follow the Diataxis framework for
structuring documentation.

Building Toga’s documentation

To build Toga’s documentation, start by setting up a development environment.

You’ll also need to install the Enchant spell checking library.

macOS

Linux

Windows

Enchant can be installed using Homebrew:

(venv) $ brew install enchant

If you’re on an M1 machine, you’ll also need to manually set the location of the Enchant library:

(venv) $ export PYENCHANT_LIBRARY_PATH=/opt/homebrew/lib/libenchant-2.2.dylib

Enchant can be installed as a system package:

Ubuntu 20.04+ / Debian 10+

$ sudo apt update
$ sudo apt install enchant-2

Fedora

$ sudo dnf install enchant

Arch, Manjaro

$ sudo pacman -Syu enchant

Enchant is installed automatically when you set up your development environment.

Build documentation locally

Once your development environment is set up, run:

macOS

Linux

Windows

(venv) $ tox -e docs

2.2. How-to Guides 37

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://diataxis.fr
https://brew.sh

Toga Documentation, Release 0.4.2

(venv) $ tox -e docs

(venv) C:\...>tox -e docs

The output of the file should be in the docs/_build/html folder. If there are any markup problems, they’ll raise an
error.

Documentation linting

The build process will identify reStructuredText problems, but Toga performs some additional “lint” checks. To run
the lint checks:

macOS

Linux

Windows

(venv) $ tox -e docs-lint

(venv) $ tox -e docs-lint

(venv) C:\...>tox -e docs-lint

This will validate the documentation does not contain:

• dead hyperlinks

• misspelled words

If a valid spelling of a word is identified as misspelled, then add the word to the list in docs/spelling_wordlist.
This will add the word to the spellchecker’s dictionary. When adding to this list, remember:

• We prefer US spelling, with some liberties for programming-specific colloquialism (e.g., “apps”) and verbing of
nouns (e.g., “scrollable”)

• Any reference to a product name should use the product’s preferred capitalization. (e.g., “macOS”, “GTK”,
“pytest”, “Pygame”, “PyScript”).

• If a term is being used “as code”, then it should be quoted as a literal rather than being added to the dictionary.

Rebuilding all documentation

To force a rebuild for all of the documentation:

macOS

Linux

Windows

(venv) $ tox -e docs-all

(venv) $ tox -e docs-all

38 Chapter 2. Community

Toga Documentation, Release 0.4.2

(venv) C:\...>tox -e docs-all

The documentation should be fully rebuilt in the docs/_build/html folder. If there are any markup problems, they’ll
raise an error.

What to work on?

If you’re looking for specific areas to improve, there are tickets tagged “documentation” in Toga’s issue tracker.

However, you don’t need to be constrained by these tickets. If you can identify a gap in Toga’s documentation, or an
improvement that can be made, start writing! Anything that improves the experience of the end user is a welcome
change.

Submitting a pull request

Before you submit a pull request, there’s a few bits of housekeeping to do. See the section on submitting a pull request
in the code contribution guide for details on our submission process.

2.2.4 Backend implementation details

Although Toga is a cross-platform toolkit, it is sometimes necessary to invoke platform-specific logic. These guides
provide information on how platform-specific features map onto the Toga backend API.

Accessing these APIs will result in an application that is no longer cross-platform (unless you gate the usage of these
APIs with sys.platform or toga.platform.current_platform checks); however, accessing a backend API may
be the only way to implement a feature that Toga doesn’t provide.

For details on how to access the the backend implementations, see the documentation on Toga’s three-layer architecture.

Android

The Android backend uses Material3 widgets.

The native APIs are accessed using Chaquopy.

Activities and Intents

On Android, some interactions are managed using Activities, which are started using Intents.

Android’s implementation of the toga.App class includes the method start_activity(), which can be used to start
an activity.

toga_android.App.start_activity(self , activity, *options, on_complete=None)
Start a native Android activity.

Parameters

• activity – The android.content.Intent instance to start

• options – Any additional arguments to pass to the native android.app.Activity.
startActivityForResult() call.

• on_complete – A callback to invoke when the activity completes. The callback will be
invoked with 2 arguments: the result code, and the result data.

2.2. How-to Guides 39

https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Adocumentation
https://m3.material.io
https://chaquo.com/chaquopy/doc/current/

Toga Documentation, Release 0.4.2

To use this method, instantiate an instance of android.content.Intent; optionally, provide additional arguments,
and a callback that will be invoked when the activity completes. For example, to dial a phone number with the Intent.
ACTION_DIAL intent:

from android.content import Intent
from android.net import Uri

intent = new Intent(Intent.ACTION_DIAL)
intent.setData(Uri.parse("tel:0123456789"))

def number_dialed(result, data):
result is the status code (e.g., Activity.RESULT_OK)
data is the value returned by the activity.
...

Assuming your toga.App app instance is called `app`
app._impl.start_activity(intent, on_complete=number_dialed)

GTK

The GTK backend uses the GTK3 API.

The native APIs are accessed using the PyGObject binding.

iOS

The iOS backend uses UIKit <https://developer.apple.com/documentation/uikit>.

The native APIs are accessed using Rubicon Objective C.

Cocoa (macOS)

The backend used on macOS uses the AppKit API, also known as Cocoa.

The native APIs are accessed using Rubicon Objective C.

Textual

The Textual backend uses the Textual API.

The native APIs are accessed using Rubicon Objective C.

Web

The Web backend uses Shoelace web components.

The DOM is accessed using PyScript.

40 Chapter 2. Community

https://docs.gtk.org/gtk3/
https://pygobject.readthedocs.io
https://rubicon-objc.readthedocs.io/
https://developer.apple.com/documentation/appkit/
https://rubicon-objc.readthedocs.io/
https://textual.textualize.io
https://rubicon-objc.readthedocs.io/
https://shoelace.style
https://pyscript.net

Toga Documentation, Release 0.4.2

Winforms (Windows)

The backend used on Windows uses the Windows Forms API.

The native .NET APIs are accessed using Python.NET.

2.2.5 Internal How-to guides

These guides are for the maintainers of the Toga project, documenting internal project procedures.

How to cut a Toga release

The release infrastructure for Toga is semi-automated, using GitHub Actions to formally publish releases.

This guide assumes that you have an upstream remote configured on your local clone of the Toga repository, pointing
at the official repository. If all you have is a checkout of a personal fork of the Toga repository, you can configure that
checkout by running:

$ git remote add upstream https://github.com/beeware/toga.git

The procedure for cutting a new release is as follows:

1. Check the contents of the upstream repository’s main branch:

$ git fetch upstream
$ git checkout --detach upstream/main

Check that the HEAD of release now matches upstream/main.

2. Ensure that the release notes are up to date. Run:

$ tox -e towncrier -- --draft

to review the release notes that will be included, and then:

$ tox -e towncrier

to generate the updated release notes.

3. Build the documentation to ensure that the new release notes don’t include any spelling errors or markup prob-
lems:

$ tox -e docs-lint,docs

4. Tag the release, and push the branch and tag upstream:

$ git tag v1.2.3
$ git push upstream HEAD:main
$ git push upstream v1.2.3

5. Pushing the tag will start a workflow to create a draft release on GitHub. You can follow the progress of the
workflow on GitHub; once the workflow completes, there should be a new draft release, and entries on the
TestPyPI server for toga-core, toga-cocoa, etc.

Confirm that this action successfully completes. If it fails, there’s a couple of possible causes:

2.2. How-to Guides 41

https://learn.microsoft.com/en-us/dotnet/desktop/winforms/?view=netdesktop-8.0
http://pythonnet.github.io
https://github.com/beeware/toga/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/toga/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/toga/releases
https://test.pypi.org/project/toga-core/
https://test.pypi.org/project/toga-cocoa/

Toga Documentation, Release 0.4.2

a. The final upload to TestPyPI failed. TestPyPI doesn’t have the same service monitoring as PyPI-proper, so
it sometimes has problems. However, it’s not critical to the release process.

b. Something else fails in the build process. If the problem can be fixed without a code change to the Toga
repository (e.g., a transient problem with build machines not being available), you can re-run the action
that failed through the GitHub Actions GUI. If the fix requires a code change, delete the old tag, make the
code change, and re-tag the release.

6. Create a clean virtual environment, install the new release from Test PyPI, and perform any pre-release testing
that may be appropriate:

$ python3 -m venv testvenv
$. ./testvenv/bin/activate
(testvenv) $ pip install --extra-index-url https://test.pypi.org/simple/ toga==1.2.3
(testvenv) $ toga-demo
(testvenv) $ #... any other manual checks you want to perform ...

7. Log into ReadTheDocs, visit the Versions tab, and activate the new version. Ensure that the build completes; if
there’s a problem, you may need to correct the build configuration, roll back and re-tag the release.

8. Edit the GitHub release to add release notes. You can use the text generated by Towncrier, but you’ll need to
update the format to Markdown, rather than ReST. If necessary, check the pre-release checkbox.

9. Double check everything, then click Publish. This will trigger a publication workflow on GitHub.

10. Wait for the packages to appear on PyPI (toga-core, toga-cocoa, etc.).

Congratulations, you’ve just published a release!

Once the release has successfully appeared on PyPI or TestPyPI, it cannot be changed. If you spot a problem after that
point, you’ll need to restart with a new version number.

2.3 Reference

2.3.1 Supported platforms

Desktop

42 Chapter 2. Community

https://readthedocs.org/projects/toga/versions/
https://github.com/beeware/toga/actions?query=workflow%3A%22Upload+Python+Package%22
https://pypi.org/project/toga-core/
https://pypi.org/project/toga-cocoa/

Toga Documentation, Release 0.4.2

macOS

The Toga backend for macOS is toga-cocoa.

Prerequisites

toga-cocoa requires macOS 11 (Big Sur) or newer.

Installation

toga-cocoa is installed automatically on macOS machines (machines that report sys.platform == 'darwin'), or
can be manually installed by running invoking:

$ python -m pip install toga-cocoa

Implementation details

toga-cocoa uses the macOS AppKit Objective-C APIs to build apps. It uses Rubicon Objective-C to provide a bridge
to the native AppKit libraries from Python.

2.3. Reference 43

https://github.com/beeware/toga/tree/main/cocoa
https://rubicon-objc.readthedocs.org

Toga Documentation, Release 0.4.2

Windows

The Toga backend for Windows is toga-winforms.

Prerequisites

toga-winforms requires Windows 10 or newer.

If you are using Windows 10 and want to use a WebView to display web content, you will also need to install the Edge
WebView2 Evergreen Runtime. Windows 11 has this runtime installed by default.

Installation

toga-winforms is installed automatically on Windows machines (machines that report sys.platform ==
'win32'), or can be manually installed by running:

$ python -m pip install toga-winforms

Implementation details

toga-winforms uses Python.net.

44 Chapter 2. Community

https://github.com/beeware/toga/tree/main/winforms
https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download
https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download
https://pythonnet.github.io

Toga Documentation, Release 0.4.2

Linux/Unix

The Toga backend for Linux (and other Unix-like operating systems) is toga-gtk.

Qt support

Toga does not currently have a Qt backend for KDE-based desktops. However, we would like to add one; see this ticket
for details. If you would like to contribute, please get in touch on that ticket, on Mastodon or on Discord.

GTK on Windows and macOS

Although GTK can be installed on Windows and macOS, and the toga-gtk backend may work on those platforms,
this is not officially supported by Toga. We recommend using toga-winforms on Windows, and toga-cocoa on
macOS.

Prerequisites

toga-gtk requires GTK 3.22 or newer. This requirement can be met with with all versions of Ubuntu since 18.04, and
all versions of Fedora since Fedora 26.

Toga receives the most testing with GTK 3.24. This is the version that has shipped with all versions of Ubuntu since
Ubuntu 20.04, and all versions of Fedora since Fedora 29.

The system packages that provide GTK must be installed manually:

These instructions are different on almost every version of Linux and Unix; here are some of the common alternatives:

Ubuntu 18.04+ / Debian 10+

(venv) $ sudo apt update
(venv) $ sudo apt install pkg-config python3-dev libgirepository1.0-dev libcairo2-dev␣
→˓gir1.2-webkit2-4.0 libcanberra-gtk3-module

Fedora

2.3. Reference 45

https://github.com/beeware/toga/tree/main/gtk
https://github.com/beeware/toga/issues/1142
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/

Toga Documentation, Release 0.4.2

(venv) $ sudo dnf install pkg-config python3-devel gobject-introspection-devel cairo-
→˓gobject-devel webkit2gtk3 libcanberra-gtk3

Arch / Manjaro

(venv) $ sudo pacman -Syu git pkgconf gobject-introspection cairo webkit2gtk libcanberra

FreeBSD

(venv) $ sudo pkg update
(venv) $ sudo pkg install gobject-introspection cairo webkit2-gtk3 libcanberra-gtk3

If you’re not using one of these, you’ll need to work out how to install the developer libraries for python3, cairo, and
gobject-introspection (and please let us know so we can improve this documentation!)

Toga does not currently support GTK 4.

Installation

toga-gtk is installed automatically on any Linux machine (machines that report sys.platform == 'linux'), or any
FreeBSD machine (machines that report sys.platform == 'freebsd*'). It can be manually installed by running:

$ python -m pip install toga-gtk

Implementation details

toga-gtk uses the native GObject Python bindings.

Mobile

Android

The Toga backend for Android is toga-android.

Prerequisites

toga-android requires Android SDK 24 (Android 7 / Nougat) or newer.

Installation

toga-android must be manually installed into an Android project; The recommended approach for deploying
toga-android is to use Briefcase to package your app.

46 Chapter 2. Community

https://github.com/beeware/toga/tree/main/android
https://briefcase.readthedocs.org

Toga Documentation, Release 0.4.2

Implementation details

toga-android uses the Android Java APIs to build apps. It uses Chaquopy to provide a bridge to the native Android
Java libraries and implement Java interfaces from Python.

iOS

The Toga backend for iOS is toga-iOS.

Prerequisites

toga-iOS requires iOS 12 or newer.

Installation

toga-iOS must be manually installed into an iOS project; The recommended approach for deploying toga-iOS is to
use Briefcase to package your app.

Implementation details

toga-iOS uses the iOS UIKit Objective-C APIs to build apps. It uses Rubicon Objective-C to provide a bridge to the
native UIKit libraries from Python.

Other

Web

Toga is able to deploy apps as a single-page web app using the toga-web backend.

Note: The Web backend is currently proof-of-concept only. Most widgets have not been implemented.

Prerequisites

toga-web will run in any modern browser. It requires PyScript 2023.05.01 or newer, and Shoelace v2.3.

Installation

The recommended approach for deploying toga-web is to use Briefcase to package your app.

toga-web can be installed manually by adding toga-web to your pyscript.toml configuration file.

2.3. Reference 47

https://chaquo.com/chaquopy/
https://github.com/beeware/toga/tree/main/iOS
https://briefcase.readthedocs.org
https://rubicon-objc.readthedocs.org
https://github.com/beeware/toga/tree/main/web
https://pyscript.net
https://shoelace.style
https://briefcase.readthedocs.org

Toga Documentation, Release 0.4.2

Implementation details

toga-web uses PyScript to run Python code in the browser.

Terminal

The Toga backend for terminal applications is toga-textual.

Prerequisites

toga-textual should run on any terminal or command shell provided by macOS, Windows or Linux.

Installation

toga-textual must be manually installed by running:

$ python -m pip install toga-textual

If toga-textual is the only Toga backend that is installed, it will be picked up automatically on any desktop operating
system. If you have another backend installed (usually, this will be the default GUI for your operating system), you will
need to set the TOGA_BACKEND environment variable to toga-textual to force the selection of the backend.

Implementation details

toga-textual uses the Textual UI toolkit.

macOS Terminal.app limitations

There are some known issues with the default macOS Terminal.app. In some layouts, box outlines render badly; this
can sometimes be resolved by altering the line spacing of the font used in the terminal. The default Terminal.app also
has a limited color palette. The maintainers of Textual recommend using an alternative terminal application to avoid
these problems.

Testing

Toga provides a toga-dummy backend that can be used for testing purposes. This backend implements the full interface
required by a platform backend, but does not display any widgets visually. It provides an API that can be used to verify
widget operation.

48 Chapter 2. Community

https://pyscript.net
https://github.com/beeware/toga/tree/main/textual
https://textual.textualize.io
https://github.com/Textualize/textual/blob/main/FAQ.md#why-doesnt-textual-look-good-on-macos
https://github.com/beeware/toga/tree/main/dummy

Toga Documentation, Release 0.4.2

Prerequisites

The dummy backend has no prerequisites.

Installation

The dummy backend must be installed manually:

$ python -m pip install toga-dummy

To force Toga to use the dummy backend, it must either be the only backend that is installed in the current Python
environment, or you must define the TOGA_BACKEND environment variable:

macOS

Linux

Windows

(venv) $ export TOGA_BACKEND=toga_dummy

(venv) $ export TOGA_BACKEND=toga_dummy

(venv) $ set TOGA_BACKEND=toga_dummy

Future Plans

Eventually, the Toga project would like to provide support for:

• WinUI (for Modern Windows look and feel)

• Qt (for KDE-based Unix desktops)

• tvOS (for AppleTV devices)

• watchOS (for Apple Watch devices)

If you are interested in these platforms and would like to contribute, please get in touch on Mastodon or Discord.

Unofficial support

At present, there are no known unofficial platform backends.

2.3.2 Toga APIs by platform

Key

Partly supported: functionality or testing is incomplete
Fully supported

2.3. Reference 49

https://fosstodon.org/@beeware
https://beeware.org/bee/chat/

Toga Documentation, Release 0.4.2

Core Components

Component macOS GTK Win-
dows

iOS Android Web Termi-
nal

App
DocumentApp
Window
MainWindow

General Widgets

Component macOS GTK Win-
dows

iOS Android Web Termi-
nal

ActivityIndicator
Button
Canvas
DateInput
DetailedList
Divider
ImageView
Label
MultilineTextInput
NumberInput
PasswordInput
ProgressBar
Selection
Slider
Switch
Table
TextInput
TimeInput
Tree
WebView
Widget

Layout Widgets

Component macOS GTK Win-
dows

iOS Android Web Termi-
nal

Box
ScrollContainer
SplitContainer
OptionContainer

50 Chapter 2. Community

Toga Documentation, Release 0.4.2

Device and Hardware

Component macOS GTK Win-
dows

iOS Android Web Termi-
nal

Camera

Resources

Component macOS GTK Win-
dows

iOS Android Web Termi-
nal

Paths
Font
Command
Icon
Image

2.3.3 API Reference

Core application components

Component Description
App The top-level representation of an application.
DocumentApp An application that manages documents.
Window An operating system-managed container of widgets.
MainWindow The main window of the application.

2.3. Reference 51

Toga Documentation, Release 0.4.2

General widgets

Compo-
nent

Description

Activi-
tyIndica-
tor

A small animated indicator showing activity on a task of indeterminate length, usually rendered as a
“spinner” animation.

Button A button that can be pressed or clicked.
Canvas A drawing area for 2D vector graphics.
DateInput A widget to select a calendar date
De-
tailedList

An ordered list of content where each item has an icon, a main heading, and a line of supplementary
text.

Divider A separator used to visually distinguish two sections of content in a layout.
Im-
ageView

Image Viewer

Label A text label for annotating forms or interfaces.
Multiline-
TextInput

A scrollable panel that allows for the display and editing of multiple lines of text.

Number-
Input

A text input that is limited to numeric input.

Pass-
wordInput

A widget to allow the entry of a password. Any value typed by the user will be obscured, allowing the
user to see the number of characters they have typed, but not the actual characters.

Progress-
Bar

A horizontal bar to visualize task progress. The task being monitored can be of known or indeterminate
length.

Selection A widget to select an single option from a list of alternatives.
Slider A widget for selecting a value within a range. The range is shown as a horizontal line, and the selected

value is shown as a draggable marker.
Switch A clickable button with two stable states: True (on, checked); and False (off, unchecked). The button

has a text label.
Table A widget for displaying columns of tabular data.
TextInput A widget for the display and editing of a single line of text.
TimeIn-
put

A widget to select a clock time

Tree A widget for displaying a hierarchical tree of tabular data.
WebView An embedded web browser.
Widget The abstract base class of all widgets. This class should not be be instantiated directly.

Layout widgets

Usage Description
Box A generic container for other widgets. Used to construct layouts.
ScrollCon-
tainer

A container that can display a layout larger that the area of the container, with overflow controlled
by scroll bars.

SplitCon-
tainer

A container that divides an area into two panels with a movable border.

OptionCon-
tainer

A container that can display multiple labeled tabs of content.

52 Chapter 2. Community

Toga Documentation, Release 0.4.2

Resources

Component Description
App Paths A mechanism for obtaining platform-appropriate file system locations for an application.
Command A representation of app functionality that the user can invoke from menus or toolbars.
Font Fonts
Icon An icon for buttons, menus, etc
Image An image
ListSource A data source describing an ordered list of data.
Source A base class for data source implementations.
TreeSource A data source describing an ordered hierarchical tree of data.
Validators A mechanism for validating that input meets a given set of criteria.
ValueSource A data source describing a single value.

Device and Hardware

Usage Description
Camera A sensor that can capture photos and/or video.

Other

Component Description
Constants Symbolic constants used by various APIs.
Keys Symbolic representation of keys used for keyboard shortcuts.

App

The top-level representation of an application.

Table 6: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

The App class is the top level representation of all application activity. It is a singleton object - any given process
can only have a single App. That application may manage multiple windows, but it is guaranteed to have at least one
window (called the main_window); when the App’s main_window is closed, the application will exit.

The application is started by calling main_loop(). This will invoke the startup() method of the app.

2.3. Reference 53

Toga Documentation, Release 0.4.2

import toga

app = toga.App("Simplest App", "com.example.simplest")
app.main_loop()

You can populate an app’s main window by passing a callable as the startup argument to the toga.App constructor.
This startup method must return the content that will be added to the main window of the app.

import toga

def create_content(app):
return toga.Box(children=[toga.Label("Hello!")])

app = toga.App("Simple App", "com.example.simple", startup=create_content)
app.main_loop()

This approach to app construction is most useful with simple apps. For most complex apps, you should subclass toga.
App, and provide an implementation of startup(). This implementation must create and assign a main_window for
the app.

import toga

class MyApp(toga.App):
def startup(self):

self.main_window = toga.MainWindow()
self.main_window.content = toga.Box(children=[toga.Label("Hello!")])
self.main_window.show()

if __name__ == '__main__':
app = MyApp("Realistic App", "org.beeware.realistic")
app.main_loop()

Every app must have a formal name (a human readable name), and an app ID (a machine-readable identifier - usually
a reversed domain name). In the examples above, these are provided as constructor arguments. However, you can
also provide these details, along with many of the other constructor arguments, as packaging metadata in a format
compatible with importlib.metadata. If you deploy your app with Briefcase, this will be done automatically.

Notes

• Apps executed under Wayland on Linux environment may not show the app’s formal name correctly. Wayland
considers many aspects of app operation to be the domain of the windowing environment, not the app; as a result,
some API requests will be ignored under a Wayland environment. Correctly displaying the app’s formal name
requires the use of a desktop metadata that Wayland can read. Packaging your app with Briefcase is one way to
produce this metadata.

54 Chapter 2. Community

https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://briefcase.readthedocs.io/en/stable
https://briefcase.readthedocs.io/en/stable

Toga Documentation, Release 0.4.2

Reference

class toga.App(formal_name=None, app_id=None, app_name=None, *, icon=None, author=None,
version=None, home_page=None, description=None, startup=None, on_exit=None, id=None,
windows=None)

Create a new App instance.

Once the app has been created, you should invoke the main_loop() method, which will start the event loop of
your App.

Parameters

• formal_name (str | None) – The human-readable name of the app. If not provided, the
metadata key Formal-Name must be present.

• app_id (str | None) – The unique application identifier. This will usually be a reversed
domain name, e.g. org.beeware.myapp. If not provided, the metadata key App-ID must
be present.

• app_name (str | None) – The name of the distribution used to load metadata with
importlib.metadata. If not provided, the following will be tried in order:

1. If the __main__ module is contained in a package, that package’s name will be used.

2. If the app_id argument was provided, its last segment will be used. For example, an
app_id of com.example.my-app would yield a distribution name of my-app.

3. As a last resort, the name toga.

• icon (IconContent | None) – The icon for the app. If not provided, Toga will attempt to
load an icon from resources/app_name, where app_name is defined above. If no resource
matching this name can be found, a warning will be printed, and the app will fall back to a
default icon.

• author (str | None) – The person or organization to be credited as the author of the app.
If not provided, the metadata key Author will be used.

• version (str | None) – The version number of the app. If not provided, the metadata key
Version will be used.

• home_page (str | None) – The URL of a web page for the app. Used in auto-generated
help menu items. If not provided, the metadata key Home-page will be used.

• description (str | None) – A brief (one line) description of the app. If not provided,
the metadata key Summary will be used.

• startup (AppStartupMethod | None) – A callable to run before starting the app.

• on_exit (OnExitHandler | None) – The initial on_exit handler.

• id – DEPRECATED - This argument will be ignored. If you need a machine-friendly
identifier, use app_id.

• windows – DEPRECATED – Windows are now automatically added to the current app.
Passing this argument will cause an exception.

about()

Display the About dialog for the app.

Default implementation shows a platform-appropriate about dialog using app metadata. Override if you
want to display a custom About dialog.

2.3. Reference 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Return type
None

add_background_task(handler)
Schedule a task to run in the background.

Schedules a coroutine or a generator to run in the background. Control will be returned to the event loop
during await or yield statements, respectively. Use this to run background tasks without blocking the GUI.
If a regular callable is passed, it will be called as is and will block the GUI until the call returns.

Parameters
handler (BackgroundTask) – A coroutine, generator or callable.

Return type
None

property app_id: str

The unique application identifier (read-only). This will usually be a reversed domain name, e.g. org.
beeware.myapp.

property app_name: str

The name of the distribution used to load metadata with importlib.metadata (read-only).

property author: str | None

The person or organization to be credited as the author of the app (read-only).

beep()

Play the default system notification sound.

Return type
None

property camera: Camera

A representation of the device’s camera (or cameras).

property commands: MutableSet[Command]

The commands available in the app.

property current_window: Window | None

Return the currently active window.

property description: str | None

A brief (one line) description of the app (read-only).

exit()

Exit the application gracefully.

This does not invoke the on_exit handler; the app will be immediately and unconditionally closed.

Return type
None

exit_full_screen()

Exit full screen mode.

Return type
None

property formal_name: str

The human-readable name of the app (read-only).

56 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

hide_cursor()

Hide cursor from view.

Return type
None

property home_page: str | None

The URL of a web page for the app (read-only). Used in auto-generated help menu items.

property icon: Icon

The Icon for the app.

Can be specified as any valid icon content.

When setting the icon, you can provide either an Icon instance, or a path that will be passed to the Icon
constructor.

property id: str

DEPRECATED – Use app_id .

property is_full_screen: bool

Is the app currently in full screen mode?

property loop: AbstractEventLoop

The event loop of the app’s main thread (read-only).

main_loop()

Start the application.

On desktop platforms, this method will block until the application has exited. On mobile and web platforms,
it returns immediately.

Return type
None

property main_window: MainWindow

The main window for the app.

property name: str

DEPRECATED – Use formal_name.

property on_exit: OnExitHandler

The handler to invoke if the user attempts to exit the app.

property paths: Paths

Paths for platform-appropriate locations on the user’s file system.

Some platforms do not allow access to any file system location other than these paths. Even when arbitrary
file access is allowed, there are preferred locations for each type of content.

set_full_screen(*windows)
Make one or more windows full screen.

Full screen is not the same as “maximized”; full screen mode is when all window borders and other window
decorations are no longer visible.

Parameters
windows (Window) – The list of windows to go full screen, in order of allocation to screens.
If the number of windows exceeds the number of available displays, those windows will not
be visible. If no windows are specified, the app will exit full screen mode.

2.3. Reference 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Return type
None

show_cursor()

Make the cursor visible.

Return type
None

startup()

Create and show the main window for the application.

Subclasses can override this method to define customized startup behavior; however, any override must
ensure the main_window has been assigned before it returns.

Return type
None

property version: str | None

The version number of the app (read-only).

visit_homepage()

Open the application’s home_page in the default browser.

If the home_page is None, this is a no-op.

Return type
None

property widgets: Mapping[str, Widget]

The widgets managed by the app, over all windows.

Can be used to look up widgets by ID over the entire app (e.g., app.widgets["my_id"]).

Only returns widgets that are currently part of a layout. A widget that has been created, but not assigned as
part of window content will not be returned by widget lookup.

property windows: Collection[Window]

The windows managed by the app. Windows are automatically added to the app when they are created, and
removed when they are closed.

protocol toga.app.AppStartupMethod

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(app, **kwargs)
The startup method of the app.

Called during app startup to set the initial main window content.

Parameters

• app (App) – The app instance that is starting.

• kwargs (Any) – Ensures compatibility with additional arguments introduced in future ver-
sions.

Returns
The widget to use as the main window content.

Return type
Widget

58 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

protocol toga.app.BackgroundTask

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(app, **kwargs)
Code that should be executed as a background task.

Parameters

• app (App) – The app that is handling the background task.

• kwargs (Any) – Ensures compatibility with additional arguments introduced in future ver-
sions.

Return type
None

protocol toga.app.OnExitHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(app, **kwargs)
A handler to invoke when the app is about to exit.

The return value of this callback controls whether the app is allowed to exit. This can be used to prevent
the app exiting with unsaved changes, etc.

Parameters

• app (App) – The app instance that is exiting.

• kwargs (Any) – Ensures compatibility with additional arguments introduced in future ver-
sions.

Returns
True if the app is allowed to exit; False if the app is not allowed to exit.

Return type
bool

DocumentApp

The top-level representation of an application that manages documents.

Table 7: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

2.3. Reference 59

https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

Usage

A DocumentApp is a specialized subclass of App that is used to manage documents. A DocumentApp does not have
a main window; each document that the app manages has it’s own main window. Each document may also define
additional windows, if necessary.

The types of documents that the DocumentApp can manage must be declared as part of the instantiation of the Doc-
umentApp. This requires that you define a subclass of toga.Document that describes how your document can be
read and displayed. In this example, the code declares an “Example Document” document type, whose files have an
extension of mydoc:

import toga

class ExampleDocument(toga.Document):
def __init__(self, path, app):

super().__init__(document_type="Example Document", path=path, app=app)

def create(self):
Create the representation for the document's main window
self.main_window = toga.DocumentMainWindow(self)
self.main_window.content = toga.MultilineTextInput()

def read(self):
Put your logic to read the document here. For example:
with self.path.open() as f:

self.content = f.read()

self.main_window.content.value = self.content

app = toga.DocumentApp("Document App", "com.example.document", {"mydoc": MyDocument})
app.main_loop()

The exact behavior of a DocumentApp is slightly different on each platform, reflecting platform differences.

macOS

On macOS, there is only ever a single instance of a DocumentApp running at any given time. That instance can manage
multiple documents. If you use the Finder to open a second document of a type managed by the DocumentApp, it will
be opened in the existing DocumentApp instance. Closing all documents will not cause the app to exit; the app will
keep executing until explicitly exited.

If the DocumentApp is started without an explicit file reference, a file dialog will be displayed prompting the user to
select a file to open. If this dialog can be dismissed, the app will continue running. Selecting “Open” from the file
menu will also display this dialog; if a file is selected, a new document window will be opened.

60 Chapter 2. Community

Toga Documentation, Release 0.4.2

Linux/Windows

On Linux and Windows, each DocumentApp instance manages a single document. If your app is running, and you use
the file manager to open a second document, a second instance of the app will be started. If you close a document’s
main window, the app instance associated with that document will exit, but any other app instances will keep running.

If the DocumentApp is started without an explicit file reference, a file dialog will be displayed prompting the user to
select a file to open. If this dialog is dismissed, the app will continue running, but will show an empty document.
Selecting “Open” from the file menu will also display this dialog; if a file is selected, the current document will be
replaced.

Reference

class toga.DocumentApp(formal_name=None, app_id=None, app_name=None, *, icon=None, author=None,
version=None, home_page=None, description=None, startup=None,
document_types=None, on_exit=None, id=None)

Bases: App

Create a document-based application.

A document-based application is the same as a normal application, with the exception that there is no main
window. Instead, each document managed by the app will create and manage it’s own window (or windows).

Parameters

• document_types (dict[str, type[Document]]) – Initial document_types mapping.

• formal_name (str | None) –

• app_id (str | None) –

• app_name (str | None) –

• icon (IconContent | None) –

• author (str | None) –

• version (str | None) –

• home_page (str | None) –

• description (str | None) –

• startup (AppStartupMethod | None) –

• on_exit (OnExitHandler | None) –

property document_types: dict[str, type[Document]]

The document types this app can manage.

A dictionary of file extensions, without leading dots, mapping to the toga.Document subclass that will be
created when a document with that extension is opened. The subclass must take exactly 2 arguments in its
constructor: path and app.

property documents: list[Document]

The list of documents associated with this app.

startup()

No-op; a DocumentApp has no windows until a document is opened.

Subclasses can override this method to define customized startup behavior.

2.3. Reference 61

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list

Toga Documentation, Release 0.4.2

Return type
None

class toga.Document(path, document_type, app=None)
Bases: ABC

Create a new Document.

Parameters

• path (str | Path) – The path where the document is stored.

• document_type (str) – A human-readable description of the document type.

• app (App) – The application the document is associated with.

property app: App

The app that this document is associated with (read-only).

can_close()

Is the main document window allowed to close?

The default implementation always returns True; subclasses can override this to prevent a window closing
with unsaved changes, etc.

This default implementation is a function; however, subclasses can define it as an asynchronous co-routine
if necessary to allow for dialog confirmations.

Return type
bool

abstract create()

Create the window (or windows) for the document.

This method must, at a minimum, assign the main_window property. It may also create additional windows
or UI elements if desired.

Return type
None

property document_type: Path

A human-readable description of the document type (read-only).

property filename: Path

DEPRECATED - Use path .

async handle_close(window, **kwargs)
An on-close handler for the main window of this document that implements platform-specific document
close behavior.

It interrogates the can_close() method to determine if the document is allowed to close.

property main_window: Window

The main window for the document.

property path: Path

The path where the document is stored (read-only).

abstract read()

Load a representation of the document into memory and populate the document window.

Return type
None

62 Chapter 2. Community

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toga Documentation, Release 0.4.2

show()

Show the main_window for this document.

Return type
None

Window

An operating system-managed container of widgets.

macOS

Linux

Windows

Android ×××

iOS ×××

Web ×××

Textual ×××

Not supported

Not supported

Not supported

Not supported

2.3. Reference 63

Toga Documentation, Release 0.4.2

64 Chapter 2. Community

Toga Documentation, Release 0.4.2

Usage

A window is the top-level container that the operating system uses to display widgets. A window may also have other
decorations, such as a title bar or toolbar.

When first created, a window is not visible. To display it, call the show() method.

The window has content, which will usually be a container widget of some kind. The content of the window can be
changed by re-assigning its content attribute to a different widget.

import toga

window = toga.Window()
window.content = toga.Box(children=[...])
window.show()

Change the window's content to something new
window.content = toga.Box(children=[...])

If the user attempts to close the window, Toga will call the on_close handler. This handler must return a bool
confirming whether the close is permitted. This can be used to implement protections against closing a window with
unsaved changes.

Once a window has been closed (either by user action, or programmatically with close()), it cannot be reused. The
behavior of any method on a Window instance after it has been closed is undefined.

Notes

• The operating system may provide controls that allow the user to resize, reposition, minimize, maximize or close
the window. However, the availability of these controls is entirely operating system dependent.

• While Toga provides methods for specifying the size and position of windows, these are ultimately at the dis-
cretion of the OS (or window manager). For example, on macOS, depending on a user’s OS-level settings, new
windows may open as tabs on the main window; on Linux, some window managers (e.g., tiling window man-
agers) may not honor an app’s size and position requests. You should avoid making UI design decisions that are
dependent on specific size and placement of windows.

• A mobile application can only have a single window (the MainWindow), and that window cannot be moved,
resized, hidden, or made full screen. Toga will raise an exception if you attempt to create a secondary window
on a mobile platform. If you try to modify the size, position, or visibility of the main window, the request will
be ignored.

Reference

class toga.Window(id=None, title=None, position=(100, 100), size=(640, 480), resizable=True, closable=True,
minimizable=True, on_close=None, resizeable=None, closeable=None)

Create a new Window.

Parameters

• id (str | None) – A unique identifier for the window. If not provided, one will be auto-
matically generated.

• title (str | None) – Title for the window. Defaults to “Toga”.

2.3. Reference 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• position (tuple[int, int]) – Position of the window, as a tuple of (x, y) coordinates,
in CSS pixels.

• size (tuple[int, int]) – Size of the window, as a tuple of (width, height), in CSS
pixels.

• resizable (bool) – Can the window be resized by the user?

• closable (bool) – Can the window be closed by the user?

• minimizable (bool) – Can the window be minimized by the user?

• on_close (OnCloseHandler | None) – The initial on_close handler.

• resizeable – DEPRECATED - Use resizable.

• closeable – DEPRECATED - Use closable.

property app: App

The App that this window belongs to (read-only).

New windows are automatically associated with the currently active app.

as_image(format=Image)
Render the current contents of the window as an image.

Parameters
format (type[ImageT]) – Format to provide. Defaults to Image; also supports PIL.
Image.Image if Pillow is installed

Returns
An image containing the window content, in the format requested.

Return type
ImageT

property closable: bool

Can the window be closed by the user?

close()

Close the window.

This does not invoke the on_close handler; the window will be immediately and unconditionally closed.

Once a window has been closed, it cannot be reused. The behavior of any method or property on a Window
instance after it has been closed is undefined, except for closed which can be used to check if the window
was closed.

Return type
None

property closeable: bool

DEPRECATED Use closable

property closed: bool

Whether the window was closed.

confirm_dialog(title, message, on_result=None)
Ask the user to confirm if they wish to proceed with an action.

Presents as a dialog with “Cancel” and “OK” buttons (or whatever labels are appropriate on the current
platform).

66 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title (str) – The title of the dialog window.

• message (str) – A message describing the action to be confirmed.

• on_result (DialogResultHandler[bool] | None) – DEPRECATED await the re-
turn value of this method.

Returns
An awaitable Dialog object. The Dialog object returns Truewhen the “OK” button is pressed,
False when the “Cancel” button is pressed.

Return type
Dialog

property content: Widget | None

Content of the window. On setting, the content is added to the same app as the window.

error_dialog(title, message, on_result=None)
Ask the user to acknowledge an error state.

Presents as an error dialog with a “OK” button to close the dialog.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title (str) – The title of the dialog window.

• message (str) – The error message to display.

• on_result (DialogResultHandler[None] | None) – DEPRECATED await the re-
turn value of this method.

Returns
An awaitable Dialog object. The Dialog object returns None when the user presses the “OK”
button.

Return type
Dialog

property full_screen: bool

Is the window in full screen mode?

Full screen mode is not the same as “maximized”. A full screen window has no title bar, toolbar or window
controls; some or all of these items may be visible on a maximized window. A good example of “full
screen” mode is a slideshow app in presentation mode - the only visible content is the slide.

hide()

Hide the window. If the window is already hidden, this method has no effect.

Return type
None

property id: str

A unique identifier for the window.

2.3. Reference 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

info_dialog(title, message, on_result=None)
Ask the user to acknowledge some information.

Presents as a dialog with a single “OK” button to close the dialog.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title (str) – The title of the dialog window.

• message (str) – The message to display.

• on_result (DialogResultHandler[None] | None) – DEPRECATED await the re-
turn value of this method.

Returns
An awaitable Dialog object. The Dialog object returns None when the user presses the ‘OK’
button.

Return type
Dialog

property minimizable: bool

Can the window be minimized by the user?

property on_close: OnCloseHandler

The handler to invoke if the user attempts to close the window.

open_file_dialog(title: str, initial_directory: Path | str | None = None, file_types: list[str] | None = None,
multiple_select: Literal[False] = False, on_result: DialogResultHandler[Path | None] |
None = None, multiselect=None)→ Dialog

open_file_dialog(title: str, initial_directory: Path | str | None = None, file_types: list[str] | None = None,
multiple_select: Literal[True] = True, on_result: DialogResultHandler[list[Path] |
None] | None = None, multiselect=None)→ Dialog

open_file_dialog(title: str, initial_directory: Path | str | None = None, file_types: list[str] | None = None,
multiple_select: bool = False, on_result: DialogResultHandler[list[Path] | Path | None]
| None = None, multiselect=None)→ Dialog

Prompt the user to select a file (or files) to open.

This dialog is not currently supported on Android or iOS.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title – The title of the dialog window

• initial_directory – The initial folder in which to open the dialog. If None, use the de-
fault location provided by the operating system (which will often be the last used location)

• file_types – The allowed filename extensions, without leading dots. If not provided, all
files will be shown.

• multiple_select – If True, the user will be able to select multiple files; if False, the
selection will be restricted to a single file.

• on_result – DEPRECATED await the return value of this method.

68 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

• multiselect – DEPRECATED Use multiple_select.

Returns
An awaitable Dialog object. The Dialog object returns a list of Path objects if
multiple_select is True, or a single Path otherwise. Returns None if the open opera-
tion is cancelled by the user.

property position: tuple[int, int]

Position of the window, as a tuple of (x, y) coordinates, in CSS pixels.

question_dialog(title, message, on_result=None)
Ask the user a yes/no question.

Presents as a dialog with “Yes” and “No” buttons.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title (str) – The title of the dialog window.

• message (str) – The question to be answered.

• on_result (DialogResultHandler[bool] | None) – DEPRECATED await the re-
turn value of this method.

Returns
An awaitable Dialog object. The Dialog object returns Truewhen the “Yes” button is pressed,
False when the “No” button is pressed.

Return type
Dialog

property resizable: bool

Can the window be resized by the user?

property resizeable: bool

DEPRECATED Use resizable

save_file_dialog(title, suggested_filename, file_types=None, on_result=None)
Prompt the user for a location to save a file.

This dialog is not currently supported on Android or iOS.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title (str) – The title of the dialog window

• suggested_filename (Path | str) – A default filename

• file_types (list[str] | None) – The allowed filename extensions, without leading
dots. If not provided, any extension will be allowed.

• on_result (DialogResultHandler[Path | None] | None) – DEPRECATED
await the return value of this method.

2.3. Reference 69

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toga Documentation, Release 0.4.2

Returns
An awaitable Dialog object. The Dialog object returns a path object for the selected file
location, or None if the user cancelled the save operation.

Return type
Dialog

select_folder_dialog(title: str, initial_directory: Path | str | None = None, multiple_select: Literal[False]
= False, on_result: DialogResultHandler[Path | None] | None = None,
multiselect=None)→ Dialog

select_folder_dialog(title: str, initial_directory: Path | str | None = None, multiple_select: Literal[True]
= True, on_result: DialogResultHandler[list[Path] | None] | None = None,
multiselect=None)→ Dialog

select_folder_dialog(title: str, initial_directory: Path | str | None = None, multiple_select: bool = False,
on_result: DialogResultHandler[list[Path] | Path | None] | None = None,
multiselect=None)→ Dialog

Prompt the user to select a directory (or directories).

This dialog is not currently supported on Android or iOS.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title – The title of the dialog window

• initial_directory – The initial folder in which to open the dialog. If None, use the
default location provided by the operating system (which will often be “last used location”)

• multiple_select – If True, the user will be able to select multiple directories; if False,
the selection will be restricted to a single directory. This option is not supported on Win-
Forms.

• on_result – DEPRECATED await the return value of this method.

• multiselect – DEPRECATED Use multiple_select.

Returns
An awaitable Dialog object. The Dialog object returns a list of Path objects if
multiple_select is True, or a single Path otherwise. Returns None if the open opera-
tion is cancelled by the user.

show()

Show the window. If the window is already visible, this method has no effect.

Return type
None

property size: tuple[int, int]

Size of the window, as a tuple of (width, height), in CSS pixels.

stack_trace_dialog(title: str, message: str, content: str, retry: Literal[False] = False, on_result:
DialogResultHandler[None] | None = None)→ Dialog

stack_trace_dialog(title: str, message: str, content: str, retry: Literal[True] = False, on_result:
DialogResultHandler[bool] | None = None)→ Dialog

70 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

stack_trace_dialog(title: str, message: str, content: str, retry: bool = False, on_result:
DialogResultHandler[bool | None] | None = None)→ Dialog

Open a dialog to display a large block of text, such as a stack trace.

This is an asynchronous method. If you invoke this method in synchronous context, it will show the
dialog, but will return immediately. The object returned by this method can be awaited to obtain the result
of the dialog.

Parameters

• title – The title of the dialog window.

• message – Contextual information about the source of the stack trace.

• content – The stack trace, pre-formatted as a multi-line string.

• retry – If true, the user will be given options to “Retry” or “Quit”; if false, a single option
to acknowledge the error will be displayed.

• on_result – DEPRECATED await the return value of this method.

Returns
An awaitable Dialog object. If retry is true, the Dialog object returns True when the user
selects “Retry”, and False when they select “Quit”. If retry is false, the Dialog object
returns None.

property title: str

Title of the window. If no title is provided, the title will default to “Toga”.

property toolbar: MutableSet[Command]

Toolbar for the window.

property visible: bool

Is the window visible?

property widgets: Mapping[str, Widget]

The widgets contained in the window.

Can be used to look up widgets by ID (e.g., window.widgets["my_id"]).

protocol toga.window.OnCloseHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(window, **kwargs)
A handler to invoke when a window is about to close.

The return value of this callback controls whether the window is allowed to close. This can be used to
prevent a window closing with unsaved changes, etc.

Parameters

• window (Window) – The window instance that is closing.

• kwargs (Any) – Ensures compatibility with additional arguments introduced in future ver-
sions.

Returns
True if the window is allowed to close; False if the window is not allowed to close.

Return type
bool

2.3. Reference 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

protocol toga.window.DialogResultHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(window, result, **kwargs)
A handler to invoke when a dialog is closed.

Parameters

• window (Window) – The window that opened the dialog.

• result (T) – The result returned by the dialog.

• kwargs (Any) – Ensures compatibility with additional arguments introduced in future ver-
sions.

Return type
None

MainWindow

The main window of the application.

macOS

Linux

Windows

Android

iOS

Web

Textual

Screenshot not available

Screenshot not available

Usage

The main window of an application is a normal toga.Window, with one exception - when the main window is closed,
the application exits.

import toga

main_window = toga.MainWindow(title='My Application')

self.toga.App.main_window = main_window
main_window.show()

As the main window is closely bound to the App, a main window cannot define an on_close handler. Instead, if you
want to prevent the main window from exiting, you should use an on_exit handler on the toga.App that the main
window is associated with.

72 Chapter 2. Community

https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

2.3. Reference 73

Toga Documentation, Release 0.4.2

Reference

class toga.MainWindow(id=None, title=None, position=(100, 100), size=(640, 480), resizable=True,
minimizable=True, resizeable=None, closeable=None)

Bases: Window

Create a new main window.

Parameters

• id (str | None) – A unique identifier for the window. If not provided, one will be auto-
matically generated.

• title (str | None) – Title for the window. Defaults to the formal name of the app.

• position (tuple[int, int]) – Position of the window, as a tuple of (x, y) coordinates,
in CSS pixels.

• size (tuple[int, int]) – Size of the window, as a tuple of (width, height), in CSS
pixels.

• resizable (bool) – Can the window be resized by the user?

• minimizable (bool) – Can the window be minimized by the user?

• resizeable – DEPRECATED - Use resizable.

• closeable – DEPRECATED - Use closable.

property on_close: None

The handler to invoke before the window is closed in response to a user action.

Always returns None. Main windows should use toga.App.on_exit(), rather than on_close.

Raises
ValueError – if an attempt is made to set the on_close handler.

74 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.4.2

2.3. Reference 75

Toga Documentation, Release 0.4.2

76 Chapter 2. Community

Toga Documentation, Release 0.4.2

Containers

Box

A generic container for other widgets. Used to construct layouts.

Table 8: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

An empty Box can be constructed without any children, with children added to the box after construction:

import toga

box = toga.Box()

label1 = toga.Label('Hello')
label2 = toga.Label('World')

box.add(label1)
box.add(label2)

Alternatively, children can be specified at the time the box is constructed:

import toga

label1 = toga.Label('Hello')
label2 = toga.Label('World')

box = toga.Box(children=[label1, label2])

In most apps, a layout is constructed by building a tree of boxes inside boxes, with concrete widgets (such as Label or
Button) forming the leaf nodes of the tree. Style directives can be applied to enforce padding around the outside of
the box, direction of child stacking inside the box, and background color of the box.

Reference

class toga.Box(id=None, style=None, children=None)
Bases: Widget

Create a new Box container widget.

Parameters

• id (str | None) – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• children (list[Widget] | None) – An optional list of children for to add to the Box.

2.3. Reference 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Toga Documentation, Release 0.4.2

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

Box widgets cannot be disabled; this property will always return True; any attempt to modify it will be
ignored.

focus()

No-op; Box cannot accept input focus.

Return type
None

OptionContainer

A container that can display multiple labeled tabs of content.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

78 Chapter 2. Community

https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

2.3. Reference 79

Toga Documentation, Release 0.4.2

80 Chapter 2. Community

Toga Documentation, Release 0.4.2

Usage

The content of an OptionContainer is a list of widgets that will form discrete tabs in the display. Each tab can be
identified by a label, and, optionally, an icon. This list of content can be modified after initial construction:

import toga

pizza = toga.Box()
pasta = toga.Box()

Create 2 initial tabs; one with an icon, and one without.
container = toga.OptionContainer(

content=[("Pizza", pizza), ("Pasta", pasta, toga.Icon("pasta"))]
)

Add another tab of content, without an icon.
salad = toga.Box()
container.content.append("Salad", salad)

Add another tab of content, with an icon
icecream = toga.Box()
container.content.append("Ice Cream", icecream, toga.Icon("icecream"))

OptionContainer content can also be specified by using OptionItem instances instead of tuples. This enables you to
be explicit when setting an icon or enabled status; it also allows you to set the initial enabled status without setting an
icon:

import toga

pizza = toga.Box()
pasta = toga.Box()

Create 2 initial tabs; one with an icon, and one without.
container = toga.OptionContainer(

content=[
toga.OptionItem("Pizza", pizza),
toga.OptionItem("Pasta", pasta, icon=toga.Icon("pasta"))

]
)

Add another tab of content, initially disabled, without an icon.
salad = toga.Box()
container.content.append(toga.OptionItem("Salad", salad, enabled=False))

When retrieving or deleting items, or when specifying the currently selected item, you can specify an item using:

• The index of the item in the list of content:

Insert a new second tab
container.content.insert(1, "Soup", toga.Box())
Make the third tab the currently active tab
container.current_tab = 2
Delete the second tab
del container.content[1]

2.3. Reference 81

Toga Documentation, Release 0.4.2

• The string label of the tab:

Insert a tab at the index currently occupied by a tab labeled "Pasta"
container.content.insert("Pasta", "Soup", toga.Box())
Make the tab labeled "Pasta" the currently active tab
container.current_tab = "Pasta"
Delete tab labeled "Pasta"
del container.content["Pasta"]

• A reference to an OptionItem :

Get a reference to the "Pasta" tab
pasta_tab = container.content["Pasta"]
Insert content at the index currently occupied by the pasta tab
container.content.insert(pasta_tab, "Soup", toga.Box())
Make the pasta tab the currently active tab
container.current_tab = pasta_tab
Delete the pasta tab
del container.content[pasta_tab]

Notes

• The use of icons on tabs varies between platforms. If the platform requires icons, and no icon is provided, a
default icon will be used. If the platform does not support icons, any icon provided will be ignored, and requests
to retrieve the icon will return None.

• The behavior of disabled tabs varies between platforms. Some platforms will display the tab, but put it in an
unselectable state; some will hide the tab. A hidden tab can still be referenced by index - the tab index refers to
the logical order, not the visible order.

• iOS can only display 5 tabs. If there are more than 5 visible tabs in an OptionContainer, the last item will be
converted into a “More” option that will allow the user to select the additional items. While the “More” menu is
displayed, the current tab will return as None.

• Android can only display 5 tabs. The API will allow you to add more than 5 tabs, and will allow you to program-
matically control tabs past the 5-item limit, but any tabs past the limit will not be displayed or be selectable by
user interaction. If the OptionContainer has more than 5 tabs, and one of the visible tabs is removed, one of the
previously unselectable tabs will become visible and selectable.

• iOS allows the user to rearrange icons on an OptionContainer. When referring to tabs by index, user re-ordering
is ignored; the logical order as configured in Toga itself is used to identify tabs.

• Icons for iOS OptionContainer tabs should be 25x25px alpha masks.

• Icons for Android OptionContainer tabs should be 24x24px alpha masks.

82 Chapter 2. Community

Toga Documentation, Release 0.4.2

Reference

type OptionContainerContent
An item of OptionContainer content can be:

• a 2-tuple, containing the title for the tab, and the content widget;

• a 3-tuple, containing the title, content widget, and icon for the tab;

• a 4-tuple, containing the title, content widget, icon for the tab, and enabled status; or

• an OptionItem instance.

class toga.OptionContainer(id=None, style=None, content=None, on_select=None)
Bases: Widget

Create a new OptionContainer.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• content (list[OptionContainerContent] | None) – The initial OptionContainer
content to display in the OptionContainer.

• on_select (OnSelectHandler | None) – Initial on_select handler.

property content: OptionList

The tabs of content currently managed by the OptionContainer.

property current_tab: OptionItem | None

The currently selected tab of content, or None if there are no tabs, or the OptionContainer is in a state where
no tab is currently selected.

This property can also be set with an int index, or a str label.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

OptionContainer widgets cannot be disabled; this property will always return True; any attempt to modify
it will be ignored.

focus()

No-op; OptionContainer cannot accept input focus

property on_select: OnSelectHandler

The callback to invoke when a new tab of content is selected.

class toga.OptionItem(text, content, *, icon=None, enabled=True)
A tab of content in an OptionContainer.

Parameters

• text (str) – The text label for the new tab.

• content (Widget) – The content widget to use for the new tab.

• icon (IconContent | None) – The icon content to use to represent the tab.

• enabled (bool) – Should the new tab be enabled?

2.3. Reference 83

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

property content: Widget

The content widget displayed in this tab of the OptionContainer.

property enabled: bool

Is the panel of content available for selection?

property icon: Icon

The Icon for the tab of content.

Can be specified as any valid icon content.

If the platform does not support the display of icons, this property will return None regardless of any value
provided.

property index: int | None

The index of the tab in the OptionContainer.

Returns None if the tab isn’t currently part of an OptionContainer.

property interface: OptionContainer

The OptionContainer that contains this tab.

Returns None if the tab isn’t currently part of an OptionContainer.

property text: str

The label for the tab of content.

class toga.widgets.optioncontainer.OptionList(interface)

__delitem__(index)
Same as remove.

Parameters
index (int | str | OptionItem) –

__getitem__(index)
Obtain a specific tab of content.

Parameters
index (int | str | OptionItem) –

Return type
OptionItem

append(text_or_item: OptionItem)

append(text_or_item: str, content: Widget, *, icon: IconContent | None = None, enabled: bool = True)
Add a new tab of content to the OptionContainer.

The new tab can be specified as an existing OptionItem instance, or by specifying the full details of the
new tab of content. If an OptionItem is provided, specifying content, icon or enabled will raise an
error.

Parameters

• text_or_item – An OptionItem ; or, the text label for the new tab.

• content – The content widget to use for the new tab.

• icon – The icon content to use to represent the tab.

• enabled – Should the new tab be enabled? (Default: True)

84 Chapter 2. Community

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

index(value)
Find the index of the tab that matches the given value.

Parameters
value (str | int | OptionItem) – The value to look for. An integer is returned as-is; if
an OptionItem is provided, that item’s index is returned; any other value will be converted
into a string, and the first tab with a label matching that string will be returned.

Raises
ValueError – If no tab matching the value can be found.

insert(index: int | str | OptionItem, text_or_item: OptionItem)

insert(index: int | str | OptionItem, text_or_item: str, content: Widget, *, icon: IconContent | None = None,
enabled: bool = True)

Insert a new tab of content to the OptionContainer at the specified index.

The new tab can be specified as an existing OptionItem instance, or by specifying the full details of the
new tab of content. If an OptionItem is provided, specifying content, icon or enabled will raise an
error.

Parameters

• index – The index where the new tab should be inserted.

• text_or_item – An OptionItem ; or, the text label for the new tab.

• content – The content widget to use for the new tab.

• icon – The icon content to use to represent the tab.

• enabled – Should the new tab be enabled? (Default: True)

remove(index)
Remove the specified tab of content.

The currently selected item cannot be deleted.

Parameters
index (int | str | OptionItem) – The index where the new tab should be inserted.

protocol toga.widgets.optioncontainer.OnSelectHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(widget, **kwargs)
A handler that will be invoked when a new tab is selected in the OptionContainer.

Note: **kwargs ensures compatibility with additional arguments introduced in future versions.

Parameters

• widget (OptionContainer) – The OptionContainer that had a selection change.

• kwargs (Any) –

Return type
None

2.3. Reference 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

ScrollContainer

A container that can display a layout larger than the area of the container, with overflow controlled by scroll bars.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

Usage

import toga

content = toga.Box(children=[...])

container = toga.ScrollContainer(content=content)

86 Chapter 2. Community

Toga Documentation, Release 0.4.2

2.3. Reference 87

Toga Documentation, Release 0.4.2

88 Chapter 2. Community

Toga Documentation, Release 0.4.2

Reference

class toga.ScrollContainer(id=None, style=None, horizontal=True, vertical=True, on_scroll=None,
content=None)

Bases: Widget

Create a new Scroll Container.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• horizontal (bool) – Should horizontal scrolling be permitted?

• vertical (bool) – Should horizontal scrolling be permitted?

• on_scroll (callable | None) – Initial on_scroll handler.

• content (Widget | None) – The content to display in the scroll window.

property content: Widget

The root content widget displayed inside the scroll container.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

ScrollContainer widgets cannot be disabled; this property will always return True; any attempt to modify
it will be ignored.

focus()

No-op; ScrollContainer cannot accept input focus

property horizontal: bool

Is horizontal scrolling enabled?

property horizontal_position: int

The current horizontal scroll position.

If the value provided is negative, or greater than the maximum horizontal position, the value will be clipped
to the valid range.

Returns
The current horizontal scroll position.

Raises
ValueError – If an attempt is made to change the horizontal position when horizontal
scrolling is disabled.

property max_horizontal_position: int

The maximum horizontal scroll position (read-only).

property max_vertical_position: int

The maximum vertical scroll position (read-only).

property on_scroll: callable

Handler to invoke when the user moves a scroll bar.

2.3. Reference 89

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toga Documentation, Release 0.4.2

property position: tuple[int, int]

The current scroll position, in the form (horizontal, vertical).

If the value provided for either axis is negative, or greater than the maximum position in that axis, the value
will be clipped to the valid range.

If scrolling is disabled in either axis, the value provided for that axis will be ignored.

property vertical: bool

Is vertical scrolling enabled?

property vertical_position: int

The current vertical scroll position.

If the value provided is negative, or greater than the maximum vertical position, the value will be clipped
to the valid range.

Returns
The current vertical scroll position.

Raises
ValueError – If an attempt is made to change the vertical position when vertical scrolling
is disabled.

SplitContainer

A container that divides an area into two panels with a movable border.

macOS

Linux

Windows

Android ×××

iOS ×××

Web ×××

Textual ×××

Not supported

Not supported

Not supported

Not supported

Usage

import toga

left_container = toga.Box()
right_container = toga.ScrollContainer()

split = toga.SplitContainer(content=[left_container, right_container])

90 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.4.2

2.3. Reference 91

Toga Documentation, Release 0.4.2

Content can be specified when creating the widget, or after creation by assigning the content attribute. The direction
of the split can also be configured, either at time of creation, or by setting the direction attribute:

import toga
from toga.constants import Direction

split = toga.SplitContainer(direction=Direction.HORIZONTAL)

left_container = toga.Box()
right_container = toga.ScrollContainer()

split.content = [left_container, right_container]

By default, the space of the SplitContainer will be evenly divided between the two panels. To specify an uneven split,
you can provide a flex value when specifying content. In the following example, there will be a 60/40 split between the
left and right panels.

import toga

split = toga.SplitContainer()
left_container = toga.Box()
right_container = toga.ScrollContainer()

split.content = [(left_container, 3), (right_container, 2)]

This only specifies the initial split; the split can be modified by the user once it is displayed.

92 Chapter 2. Community

Toga Documentation, Release 0.4.2

Reference

class toga.SplitContainer(id=None, style=None, direction=Direction.VERTICAL, content=(None, None))
Bases: Widget

Create a new SplitContainer.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• direction (Direction) – The direction in which the divider will be drawn. Either
HORIZONTAL or VERTICAL; defaults to VERTICAL

• content (tuple[Widget | None | tuple, Widget | None | tuple]) – Initial
content of the container. Defaults to both panels being empty.

property content: tuple[Widget | None | tuple, Widget | None | tuple]

The widgets displayed in the SplitContainer.

This property accepts a sequence of exactly 2 elements, each of which can be either:

• A Widget to display in the panel.

• None, to make the panel empty.

• A tuple consisting of a Widget (or None) and the initial flex value to apply to that panel in the split,
which must be greater than 0.

If a flex value isn’t specified, a value of 1 is assumed.

When reading this property, only the widgets are returned, not the flex values.

property direction: Direction

The direction of the split

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

SplitContainer widgets cannot be disabled; this property will always return True; any attempt to modify it
will be ignored.

focus()

No-op; SplitContainer cannot accept input focus

Device and Hardware

Camera

A sensor that can capture photos and/or video.

Table 9: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

2.3. Reference 93

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

Usage

Cameras attached to a device running an app can be accessed using the camera attribute. This attribute exposes an
API that allows you to check if you have have permission to access the camera device; and if permission exists, capture
photographs.

The Camera API is asynchronous. This means the methods that have long-running behavior (such as requesting per-
missions and taking photographs) must be await-ed, rather than being invoked directly. This means they must be
invoked from inside an asynchronous handler:

import toga

class MyApp(toga.App):
...
async def time_for_a_selfie(self, widget, **kwargs):

photo = await self.camera.take_photo()

Most platforms will require some form of device permission to access the camera. The permission APIs are paired
with the specific actions performed on those APIs - that is, to take a photo, you require Camera.has_permission,
which you can request using Camera.request_permission().

The calls to request permissions can be invoked from a synchronous context (i.e., a non async method); however,
they are non-blocking when used in this way. Invoking a method like Camera.request_permission() will start the
process of requesting permission, but will return immediately, without waiting for the user’s response. This allows an
app to request permissions as part of the startup process, prior to using the camera APIs, without blocking the rest of
app startup.

Toga will confirm whether the app has been granted permission to use the camera before invoking any camera API. If
permission has not yet been granted, the platform may request access at the time of first camera access; however, this
is not guaranteed to be the behavior on all platforms.

Notes

• Apps that use a camera must be configured to provide permission to the camera device. The permissions required
are platform specific:

– iOS: NSCameraUsageDescription must be defined in the app’s Info.plist file.

– macOS: The com.apple.security.device.camera entitlement must be enabled.

– Android: The android.permission.CAMERA permission must be declared.

• The iOS simulator implements the iOS Camera APIs, but is not able to take photographs. To test your app’s
Camera usage, you must use a physical iOS device.

Reference

class toga.hardware.camera.Camera(app)

Parameters
app (App) –

property app: App

The app with which the camera is associated

94 Chapter 2. Community

Toga Documentation, Release 0.4.2

property devices: list[CameraDevice]

The list of available camera devices.

property has_permission: bool

Does the user have permission to use camera devices?

If the platform requires the user to explicitly confirm permission, and the user has not yet given permission,
this will return False.

request_permission()

Request sufficient permissions to capture photos.

If permission has already been granted, this will return without prompting the user.

This is an asynchronous method. If you invoke this method in synchronous context, it will start the process
of requesting permissions, but will return immediately. The return value can be awaited in an asynchronous
context, but cannot be compared directly.

Returns
An asynchronous result; when awaited, returns True if the app has permission to take a photo;
False otherwise.

Return type
PermissionResult

take_photo(device=None, flash=FlashMode.AUTO)

Capture a photo using one of the device’s cameras.

If the platform requires permission to access the camera, and the user hasn’t previously provided that per-
mission, this will cause permission to be requested.

This is an asynchronous method. If you invoke this method in synchronous context, it will start the
process of taking a photo, but will return immediately. The return value can be awaited in an asynchronous
context, but cannot be compared directly.

Parameters

• device (CameraDevice | None) – The initial camera device to use. If a device is not
specified, a default camera will be used. Depending on the hardware available, the user
may be able to change the camera used to capture the image at runtime.

• flash (FlashMode) – The initial flash mode to use; defaults to “auto”. Depending on the
hardware available, this may be modified by the user at runtime.

Returns
An asynchronous result; when awaited, returns the toga.Image captured by the camera, or
None if the photo was cancelled.

Return type
PhotoResult

class toga.hardware.camera.CameraDevice(impl)

property has_flash: bool

Does the device have a flash?

property id: str

A unique identifier for the device

property name: str

A human-readable name for the device

2.3. Reference 95

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Resources

App Paths

A mechanism for obtaining platform-appropriate file system locations for an application.

Table 10: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

When Python code executes from the command line, the working directory is a known location - the location where
the application was started. However, when executing GUI apps, the working directory varies between platforms. As a
result, when specifying file paths, relative paths cannot be used, as there is no location to which they can be considered
relative.

Complicating matters further, operating systems have conventions (and in some cases, hard restrictions) over where
certain file types should be stored. For example, macOS provides the ~/Library/Application Support folder;
Linux encourages use of the ~/.config folder (amongst others), and Windows provides the AppData/Local folder
in the user’s home directory. Application sandbox and security policies will sometimes prevent reading or writing files
in any location other than these pre-approved locations.

To assist with finding an appropriate location to store application files, every Toga application instance has a paths
attribute that returns an instance of Paths. This object provides known file system locations that are appropriate for
storing files of given types, such as configuration files, log files, cache files, or user data.

Each location provided by the Paths object is a pathlib.Path that can be used to construct a full file path. If required,
additional sub-folders can be created under these locations.

You should not assume that any of these paths already exist. The location is guaranteed to follow operating system
conventions, but the application is responsible for ensuring the folder exists prior to writing files in these locations.

Reference

class toga.paths.Paths

property app: Path

The path of the folder that contains the definition of the app class.

This path should be considered read-only. You should not attempt to write files into this path.

property cache: Path

The platform-appropriate location for storing cache files associated with this app.

It should be assumed that the operating system will purge the contents of this directory without warning if
it needs to recover disk space.

property config: Path

The platform-appropriate location for storing user configuration files associated with this app.

property data: Path

The platform-appropriate location for storing user data associated with this app.

96 Chapter 2. Community

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toga Documentation, Release 0.4.2

property logs: Path

The platform-appropriate location for storing log files associated with this app.

property toga: Path

The path that contains the core Toga resources.

This path should be considered read-only. You should not attempt to write files into this path.

Font

A font for displaying text.

Table 11: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

For most widget styling, you do not need to create instances of the Font class. Fonts are applied to widgets using style
properties:

import toga
from toga.style.pack import pack, SERIF, BOLD

Create a bold label in the system's serif font at default system size.
my_label = toga.Label("Hello World", style=Pack(font_family=SERIF, font_weight=BOLD))

Toga provides a number of built-in system fonts. Font sizes are specified in CSS points; the default size depends on the
platform and the widget.

If you want to use a custom font, the font file must be provided as part of your app’s resources, and registered before
first use:

import toga

Register the user font with name "Roboto"
toga.Font.register("Roboto", "resources/Roboto-Regular.ttf")

Create a label with the new font.
my_label = toga.Label("Hello World", style=Pack(font_family="Roboto")

When registering a font, if an invalid value is provided for the style, variant or weight, NORMAL will be used.

When a font includes multiple weights, styles or variants, each one must be registered separately, even if they’re stored
in the same file:

import toga
from toga.style.pack import BOLD

Register a regular and bold font, contained in separate font files
Font.register("Roboto", "resources/Roboto-Regular.ttf")
Font.register("Roboto", "resources/Roboto-Bold.ttf", weight=BOLD)

(continues on next page)

2.3. Reference 97

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toga Documentation, Release 0.4.2

(continued from previous page)

Register a single font file that contains both a regular and bold weight
Font.register("Bahnschrift", "resources/Bahnschrift.ttf")
Font.register("Bahnschrift", "resources/Bahnschrift.ttf", weight=BOLD)

A small number of Toga APIs (e.g., Context.write_text) do require the use of Font instance. In these cases, you
can instantiate a Font using similar properties to the ones used for widget styling:

import toga
from toga.style.pack import BOLD

Obtain a 14 point Serif bold font instance
my_font = toga.Font(SERIF, 14, weight=BOLD)

Use the font to write on a canvas.
canvas = toga.Canvas()
canvas.context.write_text("Hello", font=my_font)

Notes

• iOS and macOS do not support the use of variant font files (that is, fonts that contain the details of multiple
weights/variants in a single file). Variant font files can be registered; however, only the “normal” variant will be
used.

• Android and Windows do not support the oblique font style. If an oblique font is specified, Toga will attempt to
use an italic style of the same font.

• Android and Windows do not support the small caps font variant. If a Small Caps font is specified, Toga will use
the normal variant of the same font.

Reference

class toga.Font(family, size, *, weight=NORMAL, style=NORMAL, variant=NORMAL)
Constructs a reference to a font.

This class should be used when an API requires an explicit font reference (e.g. Context.write_text). In all
other cases, fonts in Toga are controlled using the style properties linked below.

Parameters

• family (str) – The font family.

• size (int | str) – The font size.

• weight (str) – The font weight.

• style (str) – The font style.

• variant (str) – The font variant.

static register(family, path, *, weight=NORMAL, style=NORMAL, variant=NORMAL)
Registers a file-based font.

Note: This is not currently supported on macOS or iOS.

Parameters

98 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• family – The font family.

• path – The path to the font file. This can be an absolute path, or a path relative to the
module that defines your App class.

• weight – The font weight.

• style – The font style.

• variant – The font variant.

Command

A representation of app functionality that the user can invoke from menus or toolbars.

Table 12: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

Aside from event handlers on widgets, most GUI toolkits also provide other ways for the user to give instructions to an
app. In Toga, these UI patterns are supported by the Command class.

A command encapsulates a piece of functionality that the user can invoke - no matter how they invoke it. It doesn’t
matter if they select a menu item, press a button on a toolbar, or use a key combination - the functionality is wrapped
up in a Command.

Commands are added to an app using the properties toga.App.commands and toga.Window.toolbar. Toga then
takes control of ensuring that the command is exposed to the user in a way that they can access. On desktop platforms,
this may result in a command being added to a menu.

Commands can be organized into a Group of similar commands. Groups are hierarchical, so a group can contain a
sub-group, which can contain a sub-group, and so on. Inside a group, commands can be organized into sections.

For example:

import toga

def callback(sender, **kwargs):
print("Command activated")

stuff_group = Group('Stuff', order=40)

cmd1 = toga.Command(
callback,
label='Example command',
tooltip='Tells you when it has been activated',
shortcut=toga.Key.MOD_1 + 'k',
icon='icons/pretty.png',
group=stuff_group,
section=0

)
cmd2 = toga.Command(

(continues on next page)

2.3. Reference 99

Toga Documentation, Release 0.4.2

(continued from previous page)

...
)
...

app.commands.add(cmd1, cmd4, cmd3)
app.main_window.toolbar.add(cmd2, cmd3)

This code defines a command cmd1 that will be placed in the first section of the “Stuff” group. It can be activated by
pressing CTRL-k (or CMD-K on a Mac).

The definitions for cmd2, cmd3, and cmd4 have been omitted, but would follow a similar pattern.

It doesn’t matter what order you add commands to the app - the group, section and order will be used to display the
commands in the right order.

If a command is added to a toolbar, it will automatically be added to the app as well. It isn’t possible to have functionality
exposed on a toolbar that isn’t also exposed by the app. So, cmd2will be added to the app, even though it wasn’t explicitly
added to the app commands.

Reference

class toga.Command(action, text, *, shortcut=None, tooltip=None, icon=None, group=Group.COMMANDS,
section=0, order=0, enabled=True)

Create a new Command.

Commands may not use all the arguments - for example, on some platforms, menus will contain icons; on other
platforms they won’t.

Parameters

• action (ActionHandler | None) – A handler to invoke when the command is activated.
If this is None, the command will be disabled.

• text (str) – A label for the command.

• shortcut (str | Key | None) – A key combination that can be used to invoke the com-
mand.

• tooltip (str | None) – A short description of what the command will do.

• icon (IconContent | None) – The icon content that can be used to decorate the com-
mand if the platform requires.

• group (Group) – The group to which this command belongs.

• section (int) – The section where the command should appear within its group.

• order (int) – The position where the command should appear within its section. If multiple
items have the same group, section and order, they will be sorted alphabetically by their text.

• enabled (bool) – Is the Command currently enabled?

property enabled: bool

Is the command currently enabled?

property icon: Icon | None

The Icon for the command.

Can be specified as any valid icon content.

100 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

class toga.Group(text, *, parent=None, section=0, order=0)
An collection of commands to display together.

Parameters

• text (str) – A label for the group.

• parent (Group | None) – The parent of this group; use None to make a root group.

• section (int) – The section where the group should appear within its parent. A section
cannot be specified unless a parent is also specified.

• order (int) – The position where the group should appear within its section. If multiple
items have the same group, section and order, they will be sorted alphabetically by their text.

APP = <Group text='*' order=0>

Application-level commands

COMMANDS = <Group text='Commands' order=30>

Default group for user-provided commands

EDIT = <Group text='Edit' order=10>

Editing commands

FILE = <Group text='File' order=1>

File commands

HELP = <Group text='Help' order=100>

Help commands

VIEW = <Group text='View' order=20>

Content appearance commands

WINDOW = <Group text='Window' order=90>

Window management commands

is_child_of(parent)
Is this group a child of the provided group, directly or indirectly?

Parameters
parent (Group | None) – The potential parent to check

Returns
True if this group is a child of the provided parent.

Return type
bool

is_parent_of(child)
Is this group a parent of the provided group, directly or indirectly?

Parameters
child (Group | None) – The potential child to check

Returns
True if this group is a parent of the provided child.

Return type
bool

2.3. Reference 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

property parent: Group | None

The parent of this group; returns None if the group is a root group.

property root: Group

The root group for this group.

This will be self if the group is a root group.

protocol toga.command.ActionHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(command, **kwargs)
A handler that will be invoked when a Command is invoked.

Parameters

• command (Command) – The command that triggered the action.

• kwargs – Ensures compatibility with additional arguments introduced in future versions.

Return type
bool

Icon

A small, square image, used to provide easily identifiable visual context to a widget.

Table 13: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

Icons and Images are not the same!

Toga draws a distinction between an Icon and an Image. An Icon is small, square, and might vary between platforms.
It is a visual element that is often used as part of an interactive element such as a button, toolbar item, or tab selector -
but the Icon itself isn’t an interactive element.

An Image, on the other hand, can have an arbitrary size or aspect ratio, and is not platform dependent - the same image
will be used on every platform. An Image is not an interactive element, because there is no visual cue to the user that
the image can be interacted with.

If you are looking for a widget that the user can click on, you’re looking for a widget configured to use an Icon (probably
Button), not an on_press handler on an Image or ImageView.

The filename specified for an icon should be specified without an extension; the platform will determine an appropriate
extension, and may also modify the name of the icon to include a platform and/or size qualifier.

The following formats are supported (in order of preference):

• Android - PNG

102 Chapter 2. Community

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

• iOS - ICNS, PNG, BMP, ICO

• macOS - ICNS, PNG, PDF

• GTK - PNG, ICO, ICNS. 32px and 72px variants of each icon can be provided;

• Windows - ICO, PNG, BMP

The first matching icon of the most specific platform, with the most specific size will be used. For example, on Windows,
specifying an icon of myicon will cause Toga to look for (in order):

• myicon-windows.ico

• myicon.ico

• myicon-windows.png

• myicon.png

• myicon-windows.bmp

• myicon.bmp

On GTK, Toga will look for (in order):

• myicon-linux-72.png

• myicon-72.png

• myicon-linux-32.png

• myicon-32.png

• myicon-linux.png

• myicon.png

• myicon-linux-72.ico

• myicon-72.ico

• myicon-linux-32.ico, and so on.

An icon is guaranteed to have an implementation, regardless of the path specified. If you specify a path and no
matching icon can be found, Toga will output a warning to the console, and load a default “Tiberius the yak” icon.

Reference

type IconContent
When specifying an Icon, you can provide:

• a string specifying an absolute or relative path;

• an absolute or relative pathlib.Path object; or

• an instance of toga.Icon.

If a relative path is provided, it will be anchored relative to the module that defines your Toga application class.

class toga.Icon(path, *, system=False)
Create a new icon.

Parameters

2.3. Reference 103

https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toga Documentation, Release 0.4.2

• path (str | Path) – Base filename for the icon. The path can be an absolute file system
path, or a path relative to the module that defines your Toga application class.

This base filename should not contain an extension. If an extension is specified, it will be
ignored.

• system (bool) – For internal use only

DEFAULT_ICON

The default icon used as a fallback.

OPTION_CONTAINER_DEFAULT_TAB_ICON

The default icon used to decorate option container tabs.

TOGA_ICON

DEPRECATED - Use DEFAULT_ICON, or your own icon.

Image

Graphical content of arbitrary size.

Table 14: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Usage

Images and Icons are not the same!

Toga draws a distinction between an Image and an Icon. An Image can have an arbitrary size or aspect ratio, and is not
platform dependent - the same image will be used on every platform. An Image is not an interactive element, because
there is no visual cue to the user that the image can be interacted with.

An Icon, on the other hand, is small, square, and might vary between platforms. It is a visual element that is often
used as part of an interactive element such as a button, a toolbar item, or a tab selector - but the Icon itself isn’t an
interactive element.

If you are looking for a widget that the user can click on, you’re looking for a widget configured to use an Icon (probably
Button), not an on_press handler on an Image or ImageView.

An image can be constructed from a wide range of sources:

from pathlib import Path
import toga

Load an image in the same folder as the file that declares the App class
my_image = toga.Image("brutus.png")

Load an image at an absolute path
my_image = toga.Image(Path.home() / "path/to/brutus.png")

Create an image from raw data
(continues on next page)

104 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

(continued from previous page)

with (Path.home() / "path/to/brutus.png").open("rb") as f:
my_image = toga.Image(data=f.read())

Create an image from a PIL image (if PIL is installed)
import PIL.Image
my_pil_image = PIL.Image.new("L", (30, 30))
my_toga_image = toga.Image(my_pil_image)

Notes

• PNG and JPEG formats are guaranteed to be supported. Other formats are available on some platforms:

– GTK: BMP

– macOS: GIF, BMP, TIFF

– Windows: GIF, BMP, TIFF

• The native platform representations for images are:

– Android: android.graphics.Bitmap

– GTK: GdkPixbuf.Pixbuf

– iOS: UIImage

– macOS: NSImage

– Windows: System.Drawing.Image

Reference

type ImageContent
When specifying content for an Image, you can provide:

• a string specifying an absolute or relative path to a file in a known image format;

• an absolute or relative pathlib.Path object describing a file in a known image format;

• a “blob of bytes” data type (bytes, bytearray, or memoryview) containing raw image data in a known
image format;

• an instance of toga.Image; or

• if Pillow is installed, an instance of PIL.Image.Image; or

• an instance of the native platform image representation.

If a relative path is provided, it will be anchored relative to the module that defines your Toga application class.

class toga.Image(src=NOT_PROVIDED, *, path=NOT_PROVIDED, data=NOT_PROVIDED)

Create a new image.

Parameters

• src (ImageContent) – The source from which to load the image. Can be any valid image
content type.

• path – DEPRECATED - Use src.

2.3. Reference 105

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://pillow.readthedocs.io/
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image

Toga Documentation, Release 0.4.2

• data – DEPRECATED - Use src.

Raises

• FileNotFoundError – If a path is provided, but that path does not exist.

• ValueError – If the source cannot be loaded as an image.

as_format(format)
Return the image, converted to the image format specified.

Parameters
format (type[ImageT]) – The image class to return. Currently supports only Image, and
PIL.Image.Image if Pillow is installed.

Returns
The image in the requested format

Raises
TypeError – If the format supplied is not recognized.

Return type
ImageT

property data: bytes

The raw data for the image, in PNG format.

property height: int

The height of the image, in pixels.

property path: Path | None

The path from which the image was opened, if any (or None).

save(path)
Save image to given path.

The file format of the saved image will be determined by the extension of the filename provided (e.g path/
to/mypicture.png will save a PNG file).

Parameters
path (str | Path) – Path to save the image to.

Return type
None

property size: int, int

The size of the image, as a (width, height) tuple.

property width: int

The width of the image, in pixels.

106 Chapter 2. Community

https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#type
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toga Documentation, Release 0.4.2

Source

A base class for data source implementations.

Usage

Data sources are abstractions that allow you to define the data being managed by your application independent of the
GUI representation of that data. For details on the use of data sources, see the background guide.

Source isn’t useful on its own; it is a base class for data source implementations. It is used by ListSource, TreeSource
and ValueSource, but it can also be used by custom data source implementations. It provides an implementation of the
notification API that data sources must provide.

Reference

class toga.sources.Listener(*args, **kwargs)
Bases: Protocol

The protocol that must be implemented by objects that will act as a listener on a data source.

change(item)

A change has occurred in an item.

Parameters
item – The data object that has changed.

clear()

All items have been removed from the data source.

Parameters

• index – The 0-index position in the data.

• item – The data object that was added.

insert(index, item)

An item has been added to the data source.

Parameters

• index (int) – The 0-index position in the data.

• item – The data object that was added.

remove(index, item)

An item has been removed from the data source.

Parameters

• index (int) – The 0-index position in the data.

• item – The data object that was added.

class toga.sources.Source

A base class for data sources, providing an implementation of data notifications.

2.3. Reference 107

https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toga Documentation, Release 0.4.2

add_listener(listener)
Add a new listener to this data source.

If the listener is already registered on this data source, the request to add is ignored.

Parameters
listener (Listener) – The listener to add

property listeners: list[Listener]

The listeners of this data source.

Returns
A list of objects that are listening to this data source.

notify(notification, **kwargs)
Notify all listeners an event has occurred.

Parameters

• notification (str) – The notification to emit.

• kwargs – The data associated with the notification.

remove_listener(listener)
Remove a listener from this data source.

Parameters
listener (Listener) – The listener to remove.

ListSource

A data source describing an ordered list of data.

Usage

Data sources are abstractions that allow you to define the data being managed by your application independent of the
GUI representation of that data. For details on the use of data sources, see the background guide.

ListSource is an implementation of an ordered list of data. When a ListSource is created, it is given a list of accessors
- these are the attributes that all items managed by the ListSource will have. The API provided by ListSource is list-
like; the operations you’d expect on a normal Python list, such as insert, remove, index, and indexing with [], are
also possible on a ListSource:

from toga.sources import ListSource

source = ListSource(
accessors=["name", "weight"],
data=[

{"name": "Platypus", "weight": 2.4},
{"name": "Numbat", "weight": 0.597},
{"name": "Thylacine", "weight": 30.0},

]
)

Get the first item in the source
item = source[0]

(continues on next page)

108 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Toga Documentation, Release 0.4.2

(continued from previous page)

print(f"Animal's name is {item.name}")

Find an item with a name of "Thylacine"
item = source.find({"name": "Thylacine"})

Remove that item from the data
source.remove(item)

Insert a new item at the start of the data
source.insert(0, {"name": "Bettong", "weight": 1.2})

The ListSource manages a list of Row objects. Each Row has all the attributes described by the source’s accessors.
A Row object will be constructed for each item that is added to the ListSource, and each item can be:

• A dictionary, with the accessors mapping to the keys in the dictionary.

• Any other iterable object (except for a string), with the accessors being mapped onto the items in the iterable in
order of definition.

• Any other object, which will be mapped onto the first accessor.

Although Toga provides ListSource, you are not required to create one directly. A ListSource will be transparently
constructed if you provide an iterable object to a GUI widget that displays list-like data (i.e., toga.Table, toga.
Selection, or toga.DetailedList).

Custom List Sources

For more complex applications, you can replace ListSource with a custom data source class. Such a class must:

• Inherit from Source

• Provide the same methods as ListSource

• Return items whose attributes match the accessors expected by the widget

• Generate a change notification when any of those attributes change

• Generate insert, remove and clear notifications when items are added or removed

Reference

class toga.sources.Row(**data)
Create a new Row object.

The keyword arguments specified in the constructor will be converted into attributes on the new Row object.

When any public attributes of the Row are modified (i.e., any attribute whose name doesn’t start with _), the
source to which the row belongs will be notified.

__setattr__(attr, value)
Set an attribute on the Row object, notifying the source of the change.

Parameters

• attr (str) – The attribute to change.

• value – The new attribute value.

2.3. Reference 109

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

class toga.sources.ListSource(accessors, data=None)
Bases: Source

A data source to store an ordered list of multiple data values.

Parameters

• accessors (list[str]) – A list of attribute names for accessing the value in each column
of the row.

• data (Iterable | None) – The initial list of items in the source. Items are converted as
shown above.

__delitem__(index)
Deletes the item at position index of the list.

Parameters
index (int) –

__getitem__(index)
Returns the item at position index of the list.

Parameters
index (int) –

Return type
Row

__len__()

Returns the number of items in the list.

Return type
int

__setitem__(index, value)
Set the value of a specific item in the data source.

Parameters

• index (int) – The item to change

• value (Any) – The data for the updated item. This data will be converted into a Row object.

append(data)
Insert a row at the end of the data source.

Parameters
data – The data to append to the ListSource. This data will be converted into a Row object.

Returns
The newly constructed Row object.

clear()

Clear all data from the data source.

find(data, start=None)
Find the first item in the data that matches all the provided attributes.

This is a value based search, rather than an instance search. If two Row instances have the same values, the
first instance that matches will be returned. To search for a second instance, provide the first found instance
as the start argument. To search for a specific Row instance, use the index().

Parameters

110 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

• data (Any) – The data to search for. Only the values specified in data will be used as
matching criteria; if the row contains additional data attributes, they won’t be considered
as part of the match.

• start (None | None) – The instance from which to start the search. Defaults to None,
indicating that the first match should be returned.

Returns
The matching Row object

Raises
ValueError – If no match is found.

index(row)
The index of a specific row in the data source.

This search uses Row instances, and searches for an instance match. If two Row instances have the same
values, only the Row that is the same Python instance will match. To search for values based on equality,
use find().

Parameters
row (Row) – The row to find in the data source.

Returns
The index of the row in the data source.

Raises
ValueError – If the row cannot be found in the data source.

Return type
int

insert(index, data)
Insert a row into the data source at a specific index.

Parameters

• index (int) – The index at which to insert the item.

• data (Any) – The data to insert into the ListSource. This data will be converted into a Row
object.

Returns
The newly constructed Row object.

remove(row)
Remove a row from the data source.

Parameters
row (Row) – The row to remove from the data source.

2.3. Reference 111

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

TreeSource

A data source describing an ordered hierarchical tree of values.

Usage

Data sources are abstractions that allow you to define the data being managed by your application independent of the
GUI representation of that data. For details on the use of data sources, see the background guide.

TreeSource is an implementation of an ordered hierarchical tree of values. When a TreeSource is created, it is given a
list of accessors - these are the attributes that all items managed by the TreeSource will have. The API provided by
TreeSource is list-like; the operations you’d expect on a normal Python list, such as insert, remove, index, and
indexing with [], are also possible on a TreeSource. These methods are available on the TreeSource itself to manipulate
root nodes, and also on each node within the tree.

from toga.sources import TreeSource

source = TreeSource(
accessors=["name", "height"],
data={

"Animals": [
({"name": "Numbat", "height": 0.15}, None),
({"name": "Thylacine", "height": 0.6}, None),

],
"Plants": [

({"name": "Woollybush", "height": 2.4}, None),
({"name": "Boronia", "height": 0.9}, None),

],
}

)

Get the Animal group in the source.
The Animal group won't have a "height" attribute.
group = source[0]
print(f"Group's name is {group.name}")

Get the second item in the animal group
animal = group[1]
print(f"Animals's name is {animal.name}; it is {animal.height}m tall.")

Find an animal with a name of "Thylacine"
row = source.find(parent=source[0], {"name": "Thylacine"})

Remove that row from the data. Even though "Thylacine" isn't a root node,
remove will find it and remove it from the list of animals.
source.remove(row)

Insert a new item at the start of the list of animals.
group.insert(0, {"name": "Bettong", "height": 0.35})

Insert a new root item in the middle of the list of root nodes
source.insert(1, {"name": "Minerals"})

112 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list

Toga Documentation, Release 0.4.2

The TreeSource manages a tree of Node objects. Each Node has all the attributes described by the source’s accessors.
A Node object will be constructed for each item that is added to the TreeSource.

Each Node object in the TreeSource can have children; those children can in turn have their own children. A child that
cannot have children is called a leaf Node. Whether a child can have children is independent of whether it does have
children - it is possible for a Node to have no children and not be a leaf node. This is analogous to files and directories
on a file system: a file is a leaf Node, as it cannot have children; a directory can contain files and other directories in it,
but it can also be empty. An empty directory would not be a leaf Node.

When creating a single Node for a TreeSource (e.g., when inserting a new item), the data for the Node can be specified
as:

• A dictionary, with the accessors mapping to the keys in the dictionary

• Any iterable object (except for a string), with the accessors being mapped onto the items in the iterable in order
of definition.

• Any other object, which will be mapped onto the first accessor.

When constructing an entire TreeSource, the data can be specified as:

• A dictionary. The keys of the dictionary will be converted into Nodes, and used as parents; the values of the
dictionary will become the children of their corresponding parent.

• Any other iterable object (except a string). Each value in the iterable will be treated as a 2-item tuple, with the
first item being data for the parent Node, and the second item being the child data.

• Any other object will be converted into a single node with no children.

When specifying children, a value of None for the children will result in the creation of a leaf node. Any other value
will be processed recursively - so, a child specifier can itself be a dictionary, an iterable of 2-tuples, or data for a single
child, and so on.

Although Toga provides TreeSource, you are not required to create one directly. A TreeSource will be transparently
constructed for you if you provide one of the items listed above (e.g. list, dict, etc) to a GUI widget that displays
tree-like data (i.e., toga.Tree).

Custom TreeSources

For more complex applications, you can replace TreeSource with a custom data source class. Such a class must:

• Inherit from Source

• Provide the same methods as TreeSource

• Return items whose attributes match the accessors expected by the widget

• Generate a change notification when any of those attributes change

• Generate insert, remove and clear notifications when nodes are added or removed

2.3. Reference 113

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Toga Documentation, Release 0.4.2

Reference

class toga.sources.Node(**data)
Bases: Row

Create a new Node object.

The keyword arguments specified in the constructor will be converted into attributes on the new object.

When initially constructed, the Node will be a leaf node (i.e., no children, and marked unable to have children).

When any public attributes of the node are modified (i.e., any attribute whose name doesn’t start with _), the
source to which the node belongs will be notified.

__delitem__(index)

Parameters
index (int) –

__getitem__(index)

Parameters
index (int) –

Return type
Node

__len__()

Return type
int

__setitem__(index, data)
Set the value of a specific child in the Node.

Parameters

• index (int) – The index of the child to change

• data (Any) – The data for the updated child. This data will be converted into a Node object.

append(data, children=None)
Append a node to the end of the list of children of this node.

Parameters

• data (Any) – The data to append as a child of this node. This data will be converted into
a Node object.

• children (Any) – The data for the children of the new child node.

Returns
The new added child Node object.

can_have_children()

Can the node have children?

A value of True does not necessarily mean the node has any children, only that the node is allowed to have
children. The value of len() for the node indicates the number of actual children.

Return type
bool

114 Chapter 2. Community

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

find(data, start=None)
Find the first item in the child nodes of this node that matches all the provided attributes.

This is a value based search, rather than an instance search. If two Node instances have the same values, the
first instance that matches will be returned. To search for a second instance, provide the first found instance
as the start argument. To search for a specific Node instance, use the index().

Parameters

• data (Any) – The data to search for. Only the values specified in data will be used as
matching criteria; if the node contains additional data attributes, they won’t be considered
as part of the match.

• start (Node) – The instance from which to start the search. Defaults to None, indicating
that the first match should be returned.

Returns
The matching Node object.

Raises

• ValueError – If no match is found.

• ValueError – If the node is a leaf node.

index(child)
The index of a specific node in children of this node.

This search uses Node instances, and searches for an instance match. If two Node instances have the same
values, only the Node that is the same Python instance will match. To search for values based on equality,
use find().

Parameters
child (Node) – The node to find in the children of this node.

Returns
The index of the node in the children of this node.

Raises
ValueError – If the node cannot be found in children of this node.

insert(index, data, children=None)
Insert a node as a child of this node a specific index.

Parameters

• index (int) – The index at which to insert the new child.

• data (Any) – The data to insert into the Node as a child. This data will be converted into
a Node object.

• children (Any) – The data for the children of the new child node.

Returns
The new added child Node object.

remove(child)
Remove a child node from this node.

Parameters
child (Node) – The child node to remove from this node.

2.3. Reference 115

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

class toga.sources.TreeSource(accessors, data=None)
Bases: Source

Parameters

• accessors (list[str]) –

• data (dict | list[tuple] | None) –

__delitem__(index)

Parameters
index (int) –

__getitem__(index)

Parameters
index (int) –

Return type
Node

__len__()

Return type
int

__setitem__(index, data)
Set the value of a specific root item in the data source.

Parameters

• index (int) – The root item to change

• data (Any) – The data for the updated item. This data will be converted into a Node object.

append(data, children=None)
Append a root node at the end of the list of children of this source.

If the node is a leaf node, it will be converted into a non-leaf node.

Parameters

• data (Any) – The data to append onto the list of children of the given parent. This data
will be converted into a Node object.

• children (Any) – The data for the children to insert into the TreeSource.

Returns
The newly constructed Node object.

Raises
ValueError – If the provided parent is not part of this TreeSource.

clear()

Clear all data from the data source.

find(data, start=None)
Find the first item in the child nodes of the given node that matches all the provided attributes.

This is a value based search, rather than an instance search. If two Node instances have the same values, the
first instance that matches will be returned. To search for a second instance, provide the first found instance
as the start argument. To search for a specific Node instance, use the index().

Parameters

116 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.4.2

• data (Any) – The data to search for. Only the values specified in data will be used as
matching criteria; if the node contains additional data attributes, they won’t be considered
as part of the match.

• start (Node) – The instance from which to start the search. Defaults to None, indicating
that the first match should be returned.

Returns
The matching Node object.

Raises

• ValueError – If no match is found.

• ValueError – If the provided parent is not part of this TreeSource.

index(node)
The index of a specific root node in the data source.

This search uses Node instances, and searches for an instance match. If two Node instances have the same
values, only the Node that is the same Python instance will match. To search for values based on equality,
use find().

Parameters
node (Node) – The node to find in the data source.

Returns
The index of the node in the child list it is a part of.

Raises
ValueError – If the node cannot be found in the data source.

Return type
int

insert(index, data, children=None)
Insert a root node into the data source at a specific index.

If the node is a leaf node, it will be converted into a non-leaf node.

Parameters

• index (int) – The index into the list of children at which to insert the item.

• data (Any) – The data to insert into the TreeSource. This data will be converted into a
Node object.

• children (Any) – The data for the children to insert into the TreeSource.

Returns
The newly constructed Node object.

Raises
ValueError – If the provided parent is not part of this TreeSource.

remove(node)
Remove a node from the data source.

This will also remove the node if it is a descendant of a root node.

Parameters
node (Node) – The node to remove from the data source.

2.3. Reference 117

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.4.2

ValueSource

A data source describing a single value.

Usage

Data sources are abstractions that allow you to define the data being managed by your application independent of the
GUI representation of that data. For details on the use of data sources, see the background guide.

ValueSource is an wrapper around a single atomic value.

from toga.sources import ValueSource

source = ValueSource(42)

Get the value managed by the source
print(f"Meaning of life, the universe, and everything is {source.value}")

Custom ValueSources

A custom ValueSource has 3 requirements:

• It must have an accessor attribute that describes the name of the attribute that stores the data for the source.

• It must have an attribute matching the name of the accessor that can be used to set and retrieve and the value.

• When any change is made to the value, a change notification will be emitted.

Reference

class toga.sources.ValueSource(value=None, accessor='value')
Bases: Source

Validators

A mechanism for validating that input meets a given set of criteria.

Usage

A validator is a callable that accepts a string as input, and returns None on success, or a string on failure. If a string is
returned, that string will be used as an error message. For example, the following example will validate that the user’s
input starts with the text “Hello”:

def must_say_hello(value):
if value.lower().startswith("hello"):

return None
return "Why didn't you say hello?"

118 Chapter 2. Community

Toga Documentation, Release 0.4.2

Toga provides built-in validators for a range of common validation types, as well as some base classes that can be used
as a starting point for custom validators.

A list of validators can then be provided to any widget that performs validation, such as the TextInput widget. In the
following example, a TextInput will validate that the user has entered text that starts with “hello”, and has provided
at least 10 characters of input:

import toga
from toga.validators import MinLength

widget = toga.TextInput(validators=[
must_say_hello,
MinLength(10)

])

Whenever the input changes, all validators will be evaluated in the order they have been specified. The first validator
to fail will put the widget into an “error” state, and the error message returned by that validator will be displayed to the
user.

Reference

class toga.validators.BooleanValidator(error_message, allow_empty=True)
An abstract base class for defining a simple validator.

Subclasses should implement the is_valid() method

Parameters

• error_message (str) – The error to display to the user when the input isn’t valid.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

abstract is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

class toga.validators.Contains(substring, count=None, error_message=None, allow_empty=True)
Bases: CountValidator

A validator confirming that the string contains one or more copies of a substring.

Parameters

• substring (str) – The substring that must exist in the input.

• count (int | None) – Optional; The exact number of matches that are expected.

• error_message (str | None) – Optional; the error message to display when the input
doesn’t contain the substring (or the requested count of substrings).

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

2.3. Reference 119

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

count(input_string)
Count the instances of content of interest in the input string.

Parameters
input_string (str) – The string to inspect for content of interest.

Returns
The number of instances of content that the validator is looking for.

Return type
int

class toga.validators.ContainsDigit(count=None, error_message=None, allow_empty=True)
Bases: CountValidator

A validator confirming that the string contains digits.

Parameters

• count (int | None) – Optional; if provided, the exact count of digits that must exist. If
not provided, the existence of any digit will make the string valid.

• error_message (str | None) – Optional; the error message to display when the input
doesn’t contain digits (or the requested count of digits).

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

count(input_string)
Count the instances of content of interest in the input string.

Parameters
input_string (str) – The string to inspect for content of interest.

Returns
The number of instances of content that the validator is looking for.

Return type
int

class toga.validators.ContainsLowercase(count=None, error_message=None, allow_empty=True)
Bases: CountValidator

A validator confirming that the string contains lower case letters.

Parameters

• count (int | None) – Optional; if provided, the exact count of lower case letters that must
exist. If not provided, the existence of any lower case letter will make the string valid.

• error_message (str | None) – Optional; the error message to display when the input
doesn’t contain lower case letters (or the requested count of lower case letters).

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

count(input_string)
Count the instances of content of interest in the input string.

Parameters
input_string (str) – The string to inspect for content of interest.

Returns
The number of instances of content that the validator is looking for.

120 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Return type
int

class toga.validators.ContainsSpecial(count=None, error_message=None, allow_empty=True)
Bases: CountValidator

A validator confirming that the string contains “special” (i.e., non-alphanumeric) characters.

Parameters

• count (int | None) – Optional; if provided, the exact count of special characters that must
exist. If not provided, the existence of any special character will make the string valid.

• error_message (str | None) – Optional; the error message to display when the input
doesn’t contain special characters (or the requested count of special characters).

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

count(input_string)
Count the instances of content of interest in the input string.

Parameters
input_string (str) – The string to inspect for content of interest.

Returns
The number of instances of content that the validator is looking for.

Return type
int

class toga.validators.ContainsUppercase(count=None, error_message=None, allow_empty=True)
Bases: CountValidator

A validator confirming that the string contains upper case letters.

Parameters

• count (int | None) – Optional; if provided, the exact count of upper case letters that must
exist. If not provided, the existence of any upper case letter will make the string valid.

• error_message (str | None) – Optional; the error message to display when the input
doesn’t contain upper case letters (or the requested count of upper case letters).

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

count(input_string)
Count the instances of content of interest in the input string.

Parameters
input_string (str) – The string to inspect for content of interest.

Returns
The number of instances of content that the validator is looking for.

Return type
int

class toga.validators.CountValidator(count, expected_existence_message,
expected_non_existence_message, expected_count_message,
allow_empty=True)

Bases: object

An abstract base class for validators that are based on counting instances of some content in the overall content.

2.3. Reference 121

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

Toga Documentation, Release 0.4.2

Subclasses should implement the count() method to identify the content of interest.

Parameters

• count (int | None) – Optional; The expected count.

• expected_existence_message (str) – The error message to show if matches are ex-
pected, but were not found.

• expected_non_existence_message (str) – The error message to show if matches were
not expected, but were found.

• expected_count_message (str) – The error message to show if matches were expected,
but a different number were found.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

abstract count(input_string)
Count the instances of content of interest in the input string.

Parameters
input_string (str) – The string to inspect for content of interest.

Returns
The number of instances of content that the validator is looking for.

Return type
int

class toga.validators.Email(error_message=None, allow_empty=True)
Bases: MatchRegex

A validator confirming that the string is an email address.

Note: It’s impossible to do true RFC-compliant email validation with a regex. This validator does a “best effort”
validation. It will inevitably allow some email addresses that aren’t technically valid. However, it shouldn’t
exclude any valid email addresses.

Parameters

• error_message (str | None) – Optional; the error message to display when the input
isn’t a number.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

EMAIL_REGEX =
"^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\\.[a-zA-Z0-9-]+)*$"

class toga.validators.EndsWith(substring, error_message=None, allow_empty=True)
Bases: BooleanValidator

A validator confirming that the string ends with a given substring.

Parameters

• substring (str) – The substring that the input must end with.

• error_message (str | None) – Optional; the error message to display when the string
doesn’t end with the given substring.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

122 Chapter 2. Community

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

class toga.validators.Integer(error_message=None, allow_empty=True)
Bases: BooleanValidator

A validator confirming that the string is an integer.

Parameters

• error_message (str | None) – Optional; the error message to display when the input
isn’t an integer.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

class toga.validators.LengthBetween(min_length, max_length, error_message=None, allow_empty=True)
Bases: BooleanValidator

A validator confirming that the length of input falls in a given range.

Parameters

• min_length (int | None) – The minimum length of the string (inclusive).

• max_length (int | None) – The maximum length of the string (inclusive).

• error_message (str | None) – Optional; the error message to display when the length
isn’t in the given range.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

2.3. Reference 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

class toga.validators.MatchRegex(regex_string, error_message=None, allow_empty=True)
Bases: BooleanValidator

A validator confirming that the string matches a given regular expression.

Parameters

• regex_string – A regular expression that the input must match.

• error_message (str | None) – Optional; the error message to display when the input
doesn’t match the provided regular expression.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

class toga.validators.MaxLength(length, error_message=None)
Bases: LengthBetween

A validator confirming that the length of input does not exceed a maximum size.

Parameters

• length (int) – The maximum length of the string (inclusive).

• error_message (str | None) – Optional; the error message to display when the string is
too long.

class toga.validators.MinLength(length, error_message=None, allow_empty=True)
Bases: LengthBetween

A validator confirming that the length of input exceeds a minimum size.

Parameters

• length (int) – The minimum length of the string (inclusive).

• error_message (str | None) – Optional; the error message to display when the string
isn’t long enough.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

class toga.validators.NotContains(substring, error_message=None)
Bases: Contains

A validator confirming that the string does not contain a substring.

Parameters

• substring (str) – A substring that must not exist in the input.

• error_message (str | None) – Optional; the error message to display when the input
contains the provided substring.

124 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

class toga.validators.Number(error_message=None, allow_empty=True)
Bases: BooleanValidator

A validator confirming that the string is a number.

Parameters

• error_message (str | None) – Optional; the error message to display when the input
isn’t a number.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

class toga.validators.StartsWith(substring, error_message=None, allow_empty=True)
Bases: BooleanValidator

A validator confirming that the input starts with a given substring.

Parameters

• substring (str) – The substring that the input must start with.

• error_message (str | None) – Optional; the error message to display when the string
doesn’t start with the given substring.

• allow_empty (bool) – Optional; Is no input considered valid? Defaults to True

is_valid(input_string)
Is the input string valid?

Parameters
input_string (str) – The string to validate.

Returns
True if the input is valid.

Return type
bool

Widgets

ActivityIndicator

A small animated indicator showing activity on a task of indeterminate length, usually rendered as a “spinner” anima-
tion.

macOS

Linux

Windows ×××

2.3. Reference 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

Android ×××

iOS ×××

Web

Textual ×××

Not supported

Not supported

Not supported

Screenshot not available

Not supported

Usage

import toga

indicator = toga.ActivityIndicator()

Start the animation
indicator.start()

Stop the animation
indicator.stop()

Notes

• The ActivityIndicator will always take up a fixed amount of physical space in a layout. However, the widget will
not be visible when it is in a “stopped” state.

Reference

class toga.ActivityIndicator(id=None, style=None, running=False)
Bases: Widget

Create a new ActivityIndicator widget.

Parameters

• id – The ID for the widget.

126 Chapter 2. Community

Toga Documentation, Release 0.4.2

• style – A style object. If no style is provided, a default style will be applied to the widget.

• running (bool) – Describes whether the indicator is running at the time it is created.

property enabled: Literal[True]

Is the widget currently enabled? i.e., can the user interact with the widget?

ActivityIndicator widgets cannot be disabled; this property will always return True; any attempt to modify
it will be ignored.

focus()

No-op; ActivityIndicator cannot accept input focus

Return type
None

property is_running: bool

Determine if the activity indicator is currently running.

Use start() and stop() to change the running state.

True if this activity indicator is running; False otherwise.

start()

Start the activity indicator.

If the activity indicator is already started, this is a no-op.

Return type
None

stop()

Stop the activity indicator.

If the activity indicator is already stopped, this is a no-op.

Return type
None

Button

A button that can be pressed or clicked.

macOS

Linux

Windows

Android

iOS

Web

Textual

Screenshot not available

2.3. Reference 127

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

Screenshot not available

Usage

A button has a text label, or an icon (but not both). If an icon is specified, it will be resized to a size appropriate for the
platform. A handler can be associated with button press events.

import toga

def my_callback(button):
handle event
pass

button = toga.Button("Click me", on_press=my_callback)

icon_button = toga.Button(icon=toga.Icon("resources/my_icon"), on_press=my_callback)

Notes

• A background color of TRANSPARENT will be treated as a reset of the button to the default system color.

• On macOS, the button text color cannot be set directly; any color style directive will be ignored. The text color
is automatically selected by the platform to contrast with the background color of the button.

128 Chapter 2. Community

Toga Documentation, Release 0.4.2

Reference

class toga.Button(text=None, icon=None, id=None, style=None, on_press=None, enabled=True)
Bases: Widget

Create a new button widget.

Parameters

• text (str | None) – The text to display on the button.

• icon (IconContent | None) – The icon to display on the button. Can be specified as any
valid icon content.

• id (str | None) – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• on_press (OnPressHandler | None) – A handler that will be invoked when the button is
pressed.

• enabled (bool) – Is the button enabled (i.e., can it be pressed?). Optional; by default,
buttons are created in an enabled state.

property icon: Icon | None

The icon displayed on the button.

Can be specified as any valid icon content.

If the button is currently displaying text, and an icon is assigned, the text will be replaced by the new icon.

If None is assigned as an icon, the button will become a text button with an empty label.

Returns None if the button is currently displaying text.

property on_press: OnPressHandler

The handler to invoke when the button is pressed.

property text: str

The text displayed on the button.

None, and the Unicode codepoint U+200B (ZERO WIDTH SPACE), will be interpreted and returned as an
empty string. Any other object will be converted to a string using str().

Only one line of text can be displayed. Any content after the first newline will be ignored.

If the button is currently displaying an icon, and text is assigned, the icon will be replaced by the new text.

If the button is currently displaying an icon, the empty string will be returned.

protocol toga.widgets.button.OnPressHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

2.3. Reference 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Protocol

Toga Documentation, Release 0.4.2

__call__(widget, **kwargs)
A handler that will be invoked when a button is pressed.

Note: **kwargs ensures compatibility with additional arguments introduced in future versions.

Parameters

• widget (Button) – The button that was pressed.

• kwargs (Any) –

Return type
None

Canvas

A drawing area for 2D vector graphics.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

130 Chapter 2. Community

https://docs.python.org/3/library/typing.html#typing.Any

Toga Documentation, Release 0.4.2

2.3. Reference 131

Toga Documentation, Release 0.4.2

132 Chapter 2. Community

Toga Documentation, Release 0.4.2

Usage

Canvas is a 2D vector graphics drawing area, whose API broadly follows the HTML5 Canvas API. The Canvas provides
a drawing Context; drawing instructions are then added to that context by calling methods on the context. All positions
and sizes are measured in CSS pixels.

For example, the following code will draw an orange horizontal line:

import toga
canvas = toga.Canvas()
context = canvas.context

context.begin_path()
context.move_to(20, 20)
context.line_to(160, 20)
context.stroke(color="orange")

Toga adds an additional layer of convenience to the base HTML5 API by providing context managers for operations
that have a natural open/close life cycle. For example, the previous example could be replaced with:

import toga
canvas = toga.Canvas()

with canvas.context.Stroke(20, 20, color="orange") as stroke:
stroke.line_to(160, 20)

Any argument provided to a drawing operation or context object becomes a property of that object. Those properties
can be modified after creation, after which you should invoke Canvas.redraw to request a redraw of the canvas.

Drawing operations can also be added to or removed from a context using the list operations append, insert,
remove and clear. In this case, Canvas.redraw will be called automatically.

For example, if you were drawing a bar chart where the height of the bars changed over time, you don’t need to com-
pletely reset the canvas and redraw all the objects; you can use the same objects, only modifying the height of existing
bars, or adding and removing bars as required.

In this example, we create 2 filled drawing objects, then manipulate those objects, requesting a redraw after each set of
changes.

import toga

canvas = toga.Canvas()
with canvas.context.Fill(color="red") as fill:

circle = fill.arc(x=50, y=50, radius=15)
rect = fill.rect(x=50, y=50, width=15, height=15)

We can then change the properties of the drawing objects.
Make the circle smaller, and move it closer to the origin.
circle.x = 25
circle.y = 25
circle.radius = 5
canvas.redraw()

Change the fill color to blue
fill.color = "blue"

(continues on next page)

2.3. Reference 133

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Toga Documentation, Release 0.4.2

(continued from previous page)

canvas.redraw()

Remove the rectangle from the canvas
fill.remove(rect)

For detailed tutorials on the use of Canvas drawing instructions, see the MDN documentation for the HTML5 Canvas
API. Other than the change in naming conventions for methods - the HTML5 API uses lowerCamelCase, whereas the
Toga API uses snake_case - both APIs are very similar.

Notes

• The Canvas API allows the use of handlers to respond to mouse/pointer events. These event handlers differentiate
between “primary” and “alternate” modes of activation. When a mouse is in use, alternate activation will usually
be interpreted as a “right click”; however, platforms may not implement an alternate activation mode. To ensure
cross-platform compatibility, applications should not use the alternate press handlers as the sole mechanism for
accessing critical functionality.

Reference

class toga.Canvas(id=None, style=None, on_resize=None, on_press=None, on_activate=None,
on_release=None, on_drag=None, on_alt_press=None, on_alt_release=None,
on_alt_drag=None)

Bases: Widget

Create a new Canvas widget.

Inherits from toga.Widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• on_resize (OnResizeHandler) – Initial on_resize handler.

• on_press (OnTouchHandler) – Initial on_press handler.

• on_activate (OnTouchHandler) – Initial on_activate handler.

• on_release (OnTouchHandler) – Initial on_release handler.

• on_drag (OnTouchHandler) – Initial on_drag handler.

• on_alt_press (OnTouchHandler) – Initial on_alt_press handler.

• on_alt_release (OnTouchHandler) – Initial on_alt_release handler.

• on_alt_drag (OnTouchHandler) – Initial on_alt_drag handler.

ClosedPath(x=None, y=None)
Construct and yield a new ClosedPathContext context in the root context of this canvas.

Parameters

• x (float | None) – The x coordinate of the path’s starting point.

• y (float | None) – The y coordinate of the path’s starting point.

134 Chapter 2. Community

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

Yields
The new ClosedPathContext context object.

Context()

Construct and yield a new sub-Context within the root context of this Canvas.

Yields
The new Context object.

Fill(x=None, y=None, color=BLACK , fill_rule=FillRule.NONZERO)

Construct and yield a new FillContext in the root context of this canvas.

A drawing operator that fills the path constructed in the context according to the current fill rule.

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that
context.

Parameters

• x (float | None) – The x coordinate of the path’s starting point.

• y (float | None) – The y coordinate of the path’s starting point.

• fill_rule (FillRule) – nonzero is the non-zero winding rule; evenodd is the even-odd
winding rule.

• color (Color | str | None) – The fill color.

Yields
The new FillContext context object.

Stroke(x=None, y=None, color=BLACK , line_width=2.0, line_dash=None)
Construct and yield a new StrokeContext in the root context of this canvas.

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that
context.

Parameters

• x (float | None) – The x coordinate of the path’s starting point.

• y (float | None) – The y coordinate of the path’s starting point.

• color (Color | str | None) – The color for the stroke.

• line_width (float) – The width of the stroke.

• line_dash (list[float] | None) – The dash pattern to follow when drawing the line.
Default is a solid line.

Yields
The new StrokeContext context object.

as_image(format=toga.Image)
Render the canvas as an image.

Parameters
format (type[ImageT]) – Format to provide. Defaults to Image; also supports PIL.
Image.Image if Pillow is installed

Returns
The canvas as an image of the specified type.

Return type
ImageT

2.3. Reference 135

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#type
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image

Toga Documentation, Release 0.4.2

property context: Context

The root context for the canvas.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget? ScrollContainer widgets cannot
be disabled; this property will always return True; any attempt to modify it will be ignored.

focus()

No-op; ScrollContainer cannot accept input focus

measure_text(text, font=None, tight=None)
Measure the size at which write_text() would render some text.

Parameters

• text (str) – The text to measure. Newlines will cause line breaks, but long lines will not
be wrapped.

• font (Font | None) – The font in which to draw the text. The default is the system font.

• tight – DEPRECATED: this argument has no effect.

Returns
A tuple of (width, height).

Return type
tuple[float, float]

property on_activate: OnTouchHandler

The handler invoked when the canvas is pressed in a way indicating the pressed object should be activated.
When a mouse is in use, this will usually be a double click with the primary (usually the left) mouse button.

This event is not supported on Android or iOS.

property on_alt_drag: OnTouchHandler

The handler to invoke when the location of an alternate press changes.

This event is not supported on Android or iOS.

property on_alt_press: OnTouchHandler

The handler to invoke when the canvas is pressed in an alternate manner. This will usually correspond to a
secondary (usually the right) mouse button press.

This event is not supported on Android or iOS.

property on_alt_release: OnTouchHandler

The handler to invoke when an alternate press is released.

This event is not supported on Android or iOS.

property on_drag: OnTouchHandler

The handler invoked when the location of a press changes.

property on_press: OnTouchHandler

The handler invoked when the canvas is pressed. When a mouse is being used, this press will be with the
primary (usually the left) mouse button.

property on_release: OnTouchHandler

The handler invoked when a press on the canvas ends.

136 Chapter 2. Community

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

property on_resize: OnResizeHandler

The handler to invoke when the canvas is resized.

redraw()

Redraw the Canvas.

The Canvas will be automatically redrawn after adding or removing a drawing object, or when the Canvas
resizes. However, when you modify the properties of a drawing object, you must call redraw manually.

class toga.widgets.canvas.Context(canvas, **kwargs)
Bases: DrawingObject

A drawing context for a canvas.

You should not create a Context directly; instead, you should use the Context()method on an existing context,
or use Canvas.context to access the root context of the canvas.

Parameters
canvas (toga.Canvas) –

ClosedPath(x=None, y=None)
Construct and yield a new ClosedPath sub-context that will draw a closed path, starting from an origin.

This is a context manager; it creates a new path and moves to the start coordinate; when the context exits,
the path is closed. For fine-grained control of a path, you can use begin_path() and close_path().

Parameters

• x (float | None) – The x coordinate of the path’s starting point.

• y (float | None) – The y coordinate of the path’s starting point.

Yields
The ClosedPathContext context object.

Context()

Construct and yield a new sub-Context within this context.

Yields
The new Context object.

Fill(x=None, y=None, color=BLACK , fill_rule=FillRule.NONZERO)

Construct and yield a new Fill sub-context within this context.

This is a context manager; it creates a new path, and moves to the start coordinate; when the context exits,
the path is closed with a fill. For fine-grained control of a path, you can use begin_path , move_to,
close_path and fill.

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that
context.

Parameters

• x (float | None) – The x coordinate of the path’s starting point.

• y (float | None) – The y coordinate of the path’s starting point.

• fill_rule (FillRule) – nonzero is the non-zero winding rule; evenodd is the even-odd
winding rule.

• color (str) – The fill color.

Yields
The new FillContext context object.

2.3. Reference 137

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Stroke(x=None, y=None, color=BLACK , line_width=2.0, line_dash=None)
Construct and yield a new Stroke sub-context within this context.

This is a context manager; it creates a new path, and moves to the start coordinate; when the context exits,
the path is closed with a stroke. For fine-grained control of a path, you can use begin_path , move_to,
close_path and stroke.

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that
context.

Parameters

• x (float | None) – The x coordinate of the path’s starting point.

• y (float | None) – The y coordinate of the path’s starting point.

• color (str) – The color for the stroke.

• line_width (float) – The width of the stroke.

• line_dash (list[float] | None) – The dash pattern to follow when drawing the line.
Default is a solid line.

Yields
The new StrokeContext context object.

__getitem__(index)
Returns the drawing object at the given index.

Parameters
index (int) –

Return type
DrawingObject

__len__()

Returns the number of drawing objects that are in this context.

Return type
int

append(obj)
Append a drawing object to the context.

Parameters
obj (DrawingObject) – The drawing object to add to the context.

arc(x, y, radius, startangle=0.0, endangle=2 * pi, anticlockwise=False)
Draw a circular arc in the canvas context.

A full circle will be drawn by default; an arc can be drawn by specifying a start and end angle.

Parameters

• x (float) – The X coordinate of the circle’s center.

• y (float) – The Y coordinate of the circle’s center.

• startangle (float) – The start angle in radians, measured clockwise from the positive
X axis.

• endangle (float) – The end angle in radians, measured clockwise from the positive X
axis.

• anticlockwise (bool) – If true, the arc is swept anticlockwise. The default is clockwise.

138 Chapter 2. Community

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

• radius (float) –

Returns
The Arc DrawingObject for the operation.

begin_path()

Start a new path in the canvas context.

Returns
The BeginPath DrawingObject for the operation.

bezier_curve_to(cp1x, cp1y, cp2x, cp2y, x, y)
Draw a Bézier curve in the canvas context.

A Bézier curve requires three points. The first two are control points; the third is the end point for the
curve. The starting point is the last point in the current path, which can be changed using move_to() before
creating the Bézier curve.

Parameters

• cp1y (float) – The y coordinate for the first control point of the Bézier curve.

• cp1x (float) – The x coordinate for the first control point of the Bézier curve.

• cp2x (float) – The x coordinate for the second control point of the Bézier curve.

• cp2y (float) – The y coordinate for the second control point of the Bézier curve.

• x (float) – The x coordinate for the end point.

• y (float) – The y coordinate for the end point.

Returns
The BezierCurveTo DrawingObject for the operation.

property canvas: Canvas

The canvas that is associated with this drawing context.

clear()

Remove all drawing objects from the context.

close_path()

Close the current path in the canvas context.

This closes the current path as a simple drawing operation. It should be paired with a begin_path()
operation; or, to complete a complete closed path, use the ClosedPath() context manager.

Returns
The ClosePath DrawingObject for the operation.

closed_path(x, y)
DEPRECATED - use ClosedPath()

Parameters

• x (float) –

• y (float) –

context()

DEPRECATED - use Context()

2.3. Reference 139

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

ellipse(x, y, radiusx, radiusy, rotation=0.0, startangle=0.0, endangle=2 * pi, anticlockwise=False)
Draw an elliptical arc in the canvas context.

A full ellipse will be drawn by default; an arc can be drawn by specifying a start and end angle.

Parameters

• x (float) – The X coordinate of the ellipse’s center.

• y (float) – The Y coordinate of the ellipse’s center.

• radiusx (float) – The ellipse’s horizontal axis radius.

• radiusy (float) – The ellipse’s vertical axis radius.

• rotation (float) – The ellipse’s rotation in radians, measured clockwise around its cen-
ter.

• startangle (float) – The start angle in radians, measured clockwise from the positive
X axis.

• endangle (float) – The end angle in radians, measured clockwise from the positive X
axis.

• anticlockwise (bool) – If true, the arc is swept anticlockwise. The default is clockwise.

Returns
The Ellipse DrawingObject for the operation.

fill(color=BLACK , fill_rule=FillRule.NONZERO, preserve=None)
Fill the current path.

The fill can use either the Non-Zero or Even-Odd winding rule for filling paths.

Parameters

• fill_rule (FillRule) – nonzero is the non-zero winding rule; evenodd is the even-odd
winding rule.

• color (str) – The fill color.

• preserve – DEPRECATED: this argument has no effect.

Returns
The Fill DrawingObject for the operation.

insert(index, obj)
Insert a drawing object into the context at a specific index.

Parameters

• index (int) – The index at which the drawing object should be inserted.

• obj (DrawingObject) – The drawing object to add to the context.

line_to(x, y)
Draw a line segment ending at a point in the canvas context.

Parameters

• x (float) – The x coordinate for the end point of the line segment.

• y (float) – The y coordinate for the end point of the line segment.

Returns
The LineTo DrawingObject for the operation.

140 Chapter 2. Community

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Nonzero-rule
https://en.wikipedia.org/wiki/Even-odd_rule
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

move_to(x, y)
Moves the current point of the canvas context without drawing.

Parameters

• x (float) – The x coordinate of the new current point.

• y (float) – The y coordinate of the new current point.

Returns
The MoveTo DrawingObject for the operation.

new_path()

DEPRECATED - Use begin_path().

quadratic_curve_to(cpx, cpy, x, y)
Draw a quadratic curve in the canvas context.

A quadratic curve requires two points. The first point is a control point; the second is the end point. The
starting point of the curve is the last point in the current path, which can be changed using moveTo() before
creating the quadratic curve.

Parameters

• cpx (float) – The x axis of the coordinate for the control point of the quadratic curve.

• cpy (float) – The y axis of the coordinate for the control point of the quadratic curve.

• x (float) – The x axis of the coordinate for the end point.

• y (float) – The y axis of the coordinate for the end point.

Returns
The QuadraticCurveTo DrawingObject for the operation.

rect(x, y, width, height)
Draw a rectangle in the canvas context.

Parameters

• x (float) – The horizontal coordinate of the left of the rectangle.

• y (float) – The vertical coordinate of the top of the rectangle.

• width (float) – The width of the rectangle.

• height (float) – The height of the rectangle.

Returns
The Rect DrawingObject for the operation.

redraw()

Calls Canvas.redraw on the parent Canvas.

remove(obj)
Remove a drawing object from the context.

Parameters
obj (DrawingObject) – The drawing object to remove.

reset_transform()

Reset all transformations in the canvas context.

Returns
A ResetTransform DrawingObject.

2.3. Reference 141

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

rotate(radians)
Add a rotation to the canvas context.

Parameters
radians (float) – The angle to rotate clockwise in radians.

Returns
The Rotate DrawingObject for the transformation.

scale(sx, sy)
Add a scaling transformation to the canvas context.

Parameters

• sx (float) – Scale factor for the X dimension. A negative value flips the image horizon-
tally.

• sy (float) – Scale factor for the Y dimension. A negative value flips the image vertically.

Returns
The Scale DrawingObject for the transformation.

stroke(color=BLACK , line_width=2.0, line_dash=None)
Draw the current path as a stroke.

Parameters

• color (str) – The color for the stroke.

• line_width (float) – The width of the stroke.

• line_dash (list[float] | None) – The dash pattern to follow when drawing the line,
expressed as alternating lengths of dashes and spaces. The default is a solid line.

Returns
The Stroke DrawingObject for the operation.

translate(tx, ty)
Add a translation to the canvas context.

Parameters

• tx (float) – Translation for the X dimension.

• ty (float) – Translation for the Y dimension.

Returns
The Translate DrawingObject for the transformation.

write_text(text, x=0.0, y=0.0, font=None, baseline=Baseline.ALPHABETIC)
Write text at a given position in the canvas context.

Drawing text is effectively a series of path operations, so the text will have the color and fill properties of
the canvas context.

Parameters

• text (str) – The text to draw. Newlines will cause line breaks, but long lines will not be
wrapped.

• x (float) – The X coordinate of the text’s left edge.

• y (float) – The Y coordinate: its meaning depends on baseline.

• font (Font | None) – The font in which to draw the text. The default is the system font.

142 Chapter 2. Community

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

• baseline (Baseline) – Alignment of text relative to the Y coordinate.

Returns
The WriteText DrawingObject for the operation.

class toga.widgets.canvas.DrawingObject

Bases: ABC

A drawing operation in a Context.

Every context drawing method creates a DrawingObject, adds it to the context, and returns it. Each argument
passed to the method becomes a property of the DrawingObject, which can be modified as shown in the Usage
section.

DrawingObjects can also be created manually, then added to a context using the append() or insert()
methods. Their constructors take the same arguments as the corresponding Context method, and their classes
have the same names, but capitalized:

• toga.widgets.canvas.Arc

• toga.widgets.canvas.BeginPath

• toga.widgets.canvas.BezierCurveTo

• toga.widgets.canvas.ClosePath

• toga.widgets.canvas.Ellipse

• toga.widgets.canvas.Fill

• toga.widgets.canvas.LineTo

• toga.widgets.canvas.MoveTo

• toga.widgets.canvas.QuadraticCurveTo

• toga.widgets.canvas.Rect

• toga.widgets.canvas.ResetTransform

• toga.widgets.canvas.Rotate

• toga.widgets.canvas.Scale

• toga.widgets.canvas.Stroke

• toga.widgets.canvas.Translate

• toga.widgets.canvas.WriteText

class toga.widgets.canvas.ClosedPathContext(canvas, x=None, y=None)
Bases: Context

A drawing context that will build a closed path, starting from an origin.

This is a context manager; it creates a new path and moves to the start coordinate; when the context exits, the
path is closed. For fine-grained control of a path, you can use begin_path , move_to and close_path .

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that context.

You should not create a ClosedPathContext context directly; instead, you should use the ClosedPath()
method on an existing context.

Parameters

• canvas (toga.Canvas) –

• x (float | None) –

2.3. Reference 143

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

• y (float | None) –

class toga.widgets.canvas.FillContext(canvas, x=None, y=None, color=BLACK ,
fill_rule=FillRule.NONZERO)

Bases: ClosedPathContext

A drawing context that will apply a fill to any paths all objects in the context.

The fill can use either the Non-Zero or Even-Odd winding rule for filling paths.

This is a context manager; it creates a new path, and moves to the start coordinate; when the context exits, the
path is closed with a fill. For fine-grained control of a path, you can use begin_path , move_to, close_path
and fill.

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that context.

You should not create a FillContext context directly; instead, you should use the Fill()method on an existing
context.

Parameters

• canvas (toga.Canvas) –

• x (float | None) –

• y (float | None) –

• color (str) –

• fill_rule (FillRule) –

property color: Color

The fill color.

class toga.widgets.canvas.StrokeContext(canvas, x=None, y=None, color=BLACK , line_width=2.0,
line_dash=None)

Bases: ClosedPathContext

Construct a drawing context that will draw a stroke on all paths defined within the context.

This is a context manager; it creates a new path, and moves to the start coordinate; when the context exits, the path
is drawn with the stroke. For fine-grained control of a path, you can use begin_path , move_to, close_path
and stroke.

If both an x and y coordinate is provided, the drawing context will begin with a move_to operation in that context.

You should not create a StrokeContext context directly; instead, you should use the Stroke() method on an
existing context.

Parameters

• canvas (toga.Canvas) –

• x (float | None) –

• y (float | None) –

• color (str | None) –

• line_width (float) –

• line_dash (list[float] | None) –

property color: Color

The color of the stroke.

144 Chapter 2. Community

https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Nonzero-rule
https://en.wikipedia.org/wiki/Even-odd_rule
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

protocol toga.widgets.canvas.OnTouchHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(widget, x, y, **kwargs)
A handler that will be invoked when a Canvas is touched with a finger or mouse.

Parameters

• widget (Canvas) – The canvas that was touched.

• x (int) – X coordinate, relative to the left edge of the canvas.

• y (int) – Y coordinate, relative to the top edge of the canvas.

• kwargs – Ensures compatibility with arguments added in future versions.

protocol toga.widgets.canvas.OnResizeHandler

typing.Protocol.

Classes that implement this protocol must have the following methods / attributes:

__call__(widget, width, height, **kwargs)
A handler that will be invoked when a Canvas is resized.

Parameters

• widget (Canvas) – The canvas that was resized.

• width (int) – The new width.

• height (int) – The new height.

• kwargs – Ensures compatibility with arguments added in future versions.

DateInput

A widget to select a calendar date.

macOS ×××

Linux ×××

Windows

Android

iOS ×××

Web ×××

Textual ×××

Not supported

Not supported

Not supported

2.3. Reference 145

https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toga Documentation, Release 0.4.2

Not supported

Not supported

Usage

import toga

current_date = toga.DateInput()

Notes

• This widget supports years from 1800 to 8999 inclusive.

• Properties that return datetime.date objects can also accept:

– datetime.datetime: The date portion will be extracted.

– str: Will be parsed as an ISO8601 format date string (e.g., “2023-12-25”).

Reference

class toga.DateInput(id=None, style=None, value=None, min=None, max=None, on_change=None)
Bases: Widget

Create a new DateInput widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (datetime.date | None) – The initial date to display. If not specified, the current
date will be used.

• min (datetime.date | None) – The earliest date (inclusive) that can be selected.

• max (datetime.date | None) – The latest date (inclusive) that can be selected.

• on_change (callable | None) – A handler that will be invoked when the value changes.

property max: date

The maximum allowable date (inclusive). A value of None will be converted into the highest supported
date of 8999-12-31.

When setting this property, the current value and min will be clipped against the new maximum value.

Raises
ValueError – If set to a date outside of the supported range.

146 Chapter 2. Community

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.4.2

property min: date

The minimum allowable date (inclusive). A value of None will be converted into the lowest supported date
of 1800-01-01.

When setting this property, the current value and max will be clipped against the new minimum value.

Raises
ValueError – If set to a date outside of the supported range.

property on_change: callable

The handler to invoke when the date value changes.

property value: date

The currently selected date. A value of None will be converted into today’s date.

If this property is set to a value outside of the min/max range, it will be clipped.

DetailedList

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

2.3. Reference 147

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.date

Toga Documentation, Release 0.4.2

148 Chapter 2. Community

Toga Documentation, Release 0.4.2

2.3. Reference 149

Toga Documentation, Release 0.4.2

Usage

The simplest way to create a DetailedList is to pass a list of dictionaries, with each dictionary containing three keys:
icon, title, and subtitle:

import toga

table = toga.DetailedList(
data=[

{
"icon": toga.Icon("icons/arthur"),
"title": "Arthur Dent",
"subtitle": "Where's the tea?"

},
{

"icon": toga.Icon("icons/ford"),
"title": "Ford Prefect",
"subtitle": "Do you know where my towel is?"

},
{

"icon": toga.Icon("icons/tricia"),
"title": "Tricia McMillan",
"subtitle": "What planet are you from?"

},
]

)

If you want to customize the keys used in the dictionary, you can do this by providing an accessors argument to the
DetailedList when it is constructed. accessors is a tuple containing the attributes that will be used to provide the
icon, title, and subtitle, respectively:

import toga

table = toga.DetailedList(
accessors=("picture", "name", "quote"),
data=[

{
"picture": toga.Icon("icons/arthur"),
"name": "Arthur Dent",
"quote": "Where's the tea?"

},
{

"picture": toga.Icon("icons/ford"),
"name": "Ford Prefect",
"quote": "Do you know where my towel is?"

},
{

"picture": toga.Icon("icons/tricia"),
"name": "Tricia McMillan",
"quote": "What planet are you from?"

},
]

)

150 Chapter 2. Community

Toga Documentation, Release 0.4.2

If the value provided by the title or subtitle accessor is None, or the accessor isn’t defined, the missing_value will be
displayed. Any other value will be converted into a string.

The icon accessor should return an Icon. If it returns None, or the accessor isn’t defined, then no icon will be displayed,
but space for the icon will remain in the layout.

Items in a DetailedList can respond to a primary and secondary action. On platforms that use swipe interactions, the
primary action will be associated with “swipe left”, and the secondary action will be associated with “swipe right”.
Other platforms may implement the primary and secondary actions using a different UI interaction (e.g., a right-click
context menu). The primary and secondary actions will only be enabled in the DetailedList UI if a handler has been
provided.

By default, the primary and secondary action will be labeled as “Delete” and “Action”, respectively. These names can be
overridden by providing a primary_action and secondary_action argument when constructing the DetailedList.
Although the primary action is labeled “Delete” by default, the DetailedList will not perform any data deletion as part
of the UI interaction. It is the responsibility of the application to implement any data deletion behavior as part of the
on_primary_action handler.

The DetailedList as a whole can also respond to a refresh UI action. This is usually implemented as a “pull down”
action, such as you might see on a social media timeline. This action will only be enabled in the UI if an on_refresh
handler has been provided.

Notes

• The iOS Human Interface Guidelines differentiate between “Normal” and “Destructive” actions on a row. Toga
will interpret any action with a name of “Delete” or “Remove” as destructive, and will render the action appro-
priately.

• The WinForms implementation currently uses a column layout similar to Table, and does not support the pri-
mary, secondary or refresh actions.

Reference

class toga.DetailedList(id=None, style=None, data=None, accessors=('title', 'subtitle', 'icon'),
missing_value='', primary_action='Delete', on_primary_action=None,
secondary_action='Action', on_secondary_action=None, on_refresh=None,
on_select=None, on_delete=None)

Bases: Widget

Create a new DetailedList widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• data (Any) – Initial data to be displayed in the list.

• accessors (tuple[str, str, str]) – The accessors to use to retrieve the data for each
item, in the form (title, subtitle, icon).

• missing_value (str) – The text that will be shown when a row doesn’t provide a value for
its title or subtitle.

• on_select (callable) – Initial on_select handler.

• primary_action (str | None) – The name for the primary action.

2.3. Reference 151

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• on_primary_action (callable) – Initial on_primary_action handler.

• secondary_action (str | None) – The name for the secondary action.

• on_secondary_action (callable) – Initial on_secondary_action handler.

• on_refresh (callable) – Initial on_refresh handler.

• on_delete (callable) – DEPRECATED; use on_primary_action.

property accessors: list[str]

The accessors used to populate the list (read-only)

property data: ListSource

The data to display in the table.

When setting this property:

• A Source will be used as-is. It must either be a ListSource, or a custom class that provides the same
methods.

• A value of None is turned into an empty ListSource.

• Otherwise, the value must be an iterable, which is copied into a new ListSource. Items are converted
as shown here.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget? DetailedList widgets cannot be
disabled; this property will always return True; any attempt to modify it will be ignored.

focus()

No-op; DetailedList cannot accept input focus

property missing_value: str

The text that will be shown when a row doesn’t provide a value for its title or subtitle.

property on_delete

DEPRECATED; Use on_primary_action

property on_primary_action: callable

The handler to invoke when the user performs the primary action on a row of the DetailedList.

The primary action is “swipe left” on platforms that use swipe interactions; other platforms may manifest
this action in other ways (e.g, a context menu).

If no on_primary_action handler is provided, the primary action will be disabled in the UI.

property on_refresh: callable

The callback function to invoke when the user performs a refresh action (usually “pull down”) on the
DetailedList.

If no on_refresh handler is provided, the refresh UI action will be disabled.

property on_secondary_action: callable

The handler to invoke when the user performs the secondary action on a row of the DetailedList.

The secondary action is “swipe right” on platforms that use swipe interactions; other platforms may mani-
fest this action in other ways (e.g, a context menu).

If no on_secondary_action handler is provided, the secondary action will be disabled in the UI.

property on_select: callable

The callback function that is invoked when a row of the DetailedList is selected.

152 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

scroll_to_bottom()

Scroll the view so that the bottom of the list (last row) is visible.

scroll_to_row(row)
Scroll the view so that the specified row index is visible.

Parameters
row (int) – The index of the row to make visible. Negative values refer to the nth last row
(-1 is the last row, -2 second last, and so on).

scroll_to_top()

Scroll the view so that the top of the list (first row) is visible.

property selection: Row | None

The current selection of the table.

Returns the selected Row object, or None if no row is currently selected.

Divider

A separator used to visually distinguish two sections of content in a layout.

macOS

Linux

Windows

Android

iOS ×××

Web

Textual ×××

Not supported

Screenshot not available

Not supported

2.3. Reference 153

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

Usage

To separate two labels stacked vertically with a horizontal line:

import toga
from toga.style.pack import Pack, COLUMN

box = toga.Box(
children=[

toga.Label("First section"),
toga.Divider(),
toga.Label("Second section"),

],
style=Pack(direction=COLUMN, flex=1, padding=10)

)

The direction (horizontal or vertical) can be given as an argument. If not specified, it will default to horizontal.

Reference

class toga.Divider(id=None, style=None, direction=HORIZONTAL)
Bases: Widget

Create a new divider line.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• direction (Direction) – The direction in which the divider will be drawn. Either
HORIZONTAL or VERTICAL; defaults to HORIZONTAL

HORIZONTAL = 0

VERTICAL = 1

property direction: Direction

The direction in which the visual separator will be drawn.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

Divider widgets cannot be disabled; this property will always return True; any attempt to modify it will be
ignored.

focus()

No-op; Divider cannot accept input focus

154 Chapter 2. Community

https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

ImageView

A widget that displays an image.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

Usage

An ImageView provides a mechanism to display an Image as part of an interface.

import toga

my_image = toga.Image(self.paths.app / "brutus.png")
view = toga.ImageView(my_image)

2.3. Reference 155

Toga Documentation, Release 0.4.2

Notes

• An ImageView is not an interactive element - there is no on_press handler for ImageView. If you want a
graphical element that can be clicked or pressed, try using a toga.Button that uses an toga.Icon.

• The default size of the view is the size of the image, or 0x0 if image is None.

• If an explicit width or height is specified, the size of the image will be fixed in that axis, and the size in the other
axis will be determined by the image’s aspect ratio.

• If an explicit width and height is specified, the image will be scaled to fill the described size without preserving
the aspect ratio.

• If an ImageView is given a style of flex=1, and doesn’t have an explicit size set along its container’s main axis,
it will be allowed to expand and contract along that axis, with the size determined by the flex allocation.

– If the cross axis size is unspecified, it will be determined by applying the image’s aspect ratio to the size
allocated on the main axis.

– If the cross axis has an explicit size, the image will be scaled to fill the available space so that the entire
image can be seen, while preserving its aspect ratio. Any extra space will be distributed equally between
both sides.

Reference

class toga.ImageView(image=None, id=None, style=None)
Bases: Widget

Create a new image view.

Parameters

• image (ImageContent | None) – The image to display. Can be any valid image content
type; or None to display no image.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

as_image(format=toga.Image)
Return the image in the specified format.

Parameters
format (type[ImageT]) – Format to provide. Defaults to Image; also supports PIL.
Image.Image if Pillow is installed.

156 Chapter 2. Community

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image

Toga Documentation, Release 0.4.2

Returns
The image in the specified format.

Return type
ImageT

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

ImageView widgets cannot be disabled; this property will always return True; any attempt to modify it will
be ignored.

focus()

No-op; ImageView cannot accept input focus

property image: Image | None

The image to display.

When setting an image, you can provide any valid image content type; or None to clear the image view.

Label

A text label for annotating forms or interfaces.

macOS

Linux

Windows

Android

iOS

Web

Textual

Screenshot not available

Screenshot not available

2.3. Reference 157

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

Usage

import toga

label = toga.Label("Hello world")

Notes

• Winforms does not support an alignment value of JUSTIFIED. If this alignment value is used, the label will
default to left alignment.

Reference

class toga.Label(text, id=None, style=None)
Bases: Widget

Create a new text label.

Parameters

• text (str) – Text of the label.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

focus()

No-op; Label cannot accept input focus

property text: str

The text displayed by the label.

None, and the Unicode codepoint U+200B (ZERO WIDTH SPACE), will be interpreted and returned as an
empty string. Any other object will be converted to a string using str().

158 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

MultilineTextInput

A scrollable panel that allows for the display and editing of multiple lines of text.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

2.3. Reference 159

Toga Documentation, Release 0.4.2

Usage

import toga

textbox = toga.MultilineTextInput()
textbox.value = "Some text.\nIt can be multiple lines of text."

The input can be provided a placeholder value - this is a value that will be displayed to the user as a prompt for
appropriate content for the widget. This placeholder will only be displayed if the widget has no content; as soon as a
value is provided (either by the user, or programmatically), the placeholder content will be hidden.

Notes

• Winforms does not support the use of partially or fully transparent colors for the MultilineTextInput background.
If a color with an alpha value is provided (including TRANSPARENT), the alpha channel will be ignored. A
TRANSPARENT background will be rendered as white.

Reference

class toga.MultilineTextInput(id=None, style=None, value=None, readonly=False, placeholder=None,
on_change=None)

Bases: Widget

Create a new multi-line text input widget.

Parameters

• id – The ID for the widget.

160 Chapter 2. Community

Toga Documentation, Release 0.4.2

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (str | None) – The initial content to display in the widget.

• readonly (bool) – Can the value of the widget be modified by the user?

• placeholder (str | None) – The content to display as a placeholder when there is no
user content to display.

• on_change (callable | None) – A handler that will be invoked when the the value of the
widget changes.

property on_change: callable

The handler to invoke when the value of the widget changes.

property placeholder: str

The placeholder text for the widget.

A value of None will be interpreted and returned as an empty string. Any other object will be converted to
a string using str().

property readonly: bool

Can the value of the widget be modified by the user?

This only controls manual changes by the user (i.e., typing at the keyboard). Programmatic changes are
permitted while the widget has readonly enabled.

scroll_to_bottom()

Scroll the view to make the bottom of the text field visible.

scroll_to_top()

Scroll the view to make the top of the text field visible.

property value: str

The text to display in the widget.

A value of None will be interpreted and returned as an empty string. Any other object will be converted to
a string using str().

NumberInput

A text input that is limited to numeric input.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

2.3. Reference 161

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Not supported

Not supported

Usage

import toga

widget = toga.NumberInput(min_value=1, max_value=10, step=0.001)
widget.value = 2.718

NumberInput’s properties can accept integers, floats, and strings containing numbers, but they always return decimal.
Decimal objects to ensure precision is retained.

Reference

class toga.NumberInput(id=None, style=None, step=1, min=None, max=None, value=None, readonly=False,
on_change=None, min_value=None, max_value=None)

Bases: Widget

Create a new number input widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• step (Decimal) – The amount that any increment/decrement operations will apply to the
widget’s current value.

• min (Decimal | None) – If provided, value will be guaranteed to be greater than or equal
to this minimum.

• max (Decimal | None) – If provided, value will be guaranteed to be less than or equal to
this maximum.

• value (Decimal | None) – The initial value for the widget.

162 Chapter 2. Community

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/decimal.html#decimal.Decimal

Toga Documentation, Release 0.4.2

• readonly (bool) – Can the value of the widget be modified by the user?

• on_change (callable | None) – A handler that will be invoked when the the value of the
widget changes.

• min_value (Decimal | None) – DEPRECATED; alias of min.

• max_value (Decimal | None) – DEPRECATED; alias of max.

property max: Decimal | None

The maximum bound for the widget’s value.

Returns None if there is no maximum bound.

When setting this property, the current value and min will be clipped against the new maximum value.

property max_value: Decimal | None

DEPRECATED; alias of max.

property min: Decimal | None

The minimum bound for the widget’s value.

Returns None if there is no minimum bound.

When setting this property, the current value and max will be clipped against the new minimum value.

property min_value: Decimal | None

DEPRECATED; alias of min.

property on_change: callable

The handler to invoke when the value of the widget changes.

property readonly: bool

Can the value of the widget be modified by the user?

This only controls manual changes by the user (i.e., typing at the keyboard). Programmatic changes are
permitted while the widget has readonly enabled.

property step: Decimal

The amount that any increment/decrement operations will apply to the widget’s current value. (Not all
backends provide increment and decrement buttons.)

property value: Decimal | None

Current value of the widget, rounded to the same number of decimal places as step, or None if no value
has been set.

If this property is set to a value outside of the min/max range, it will be clipped.

While the widget is being edited by the user, it is possible for the UI to contain a value which is outside of
the min/max range, or has too many decimal places. In this case, this property will return a value that has
been clipped and rounded, and the visible text will be updated to match as soon as the widget loses focus.

2.3. Reference 163

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

PasswordInput

A widget to allow the entry of a password. Any value typed by the user will be obscured, allowing the user to see the
number of characters they have typed, but not the actual characters.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

Usage

The PasswordInput is functionally identical to a TextInput, except for how the text is displayed. All features
supported by TextInput are also supported by PasswordInput.

import toga

password = toga.PasswordInput()

164 Chapter 2. Community

Toga Documentation, Release 0.4.2

Notes

• Winforms does not support the use of partially or fully transparent colors for the PasswordInput background.
If a color with an alpha value is provided (including TRANSPARENT), the alpha channel will be ignored. A
TRANSPARENT background will be rendered as white.

• On Winforms, if a PasswordInput is given an explicit height, the rendered widget will not expand to fill that
space. The widget will have the fixed height determined by the font used on the widget. In general, you should
avoid setting a height style property on PasswordInput widgets.

Reference

class toga.PasswordInput(id=None, style=None, value=None, readonly=False, placeholder=None,
on_change=None, on_confirm=None, on_gain_focus=None, on_lose_focus=None,
validators=None)

Bases: TextInput

Create a new password input widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (str | None) – The initial content to display in the widget.

• readonly (bool) – Can the value of the widget be modified by the user?

• placeholder (str | None) – The content to display as a placeholder when there is no
user content to display.

• on_change (callable | None) – A handler that will be invoked when the the value of the
widget changes.

• on_confirm (callable | None) – A handler that will be invoked when the user accepts
the value of the input (usually by pressing Return on the keyboard).

• on_gain_focus (callable | None) – A handler that will be invoked when the widget
gains input focus.

• on_lose_focus (callable | None) – A handler that will be invoked when the widget
loses input focus.

• validators (list[callable] | None) – A list of validators to run on the value of the
input.

2.3. Reference 165

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Toga Documentation, Release 0.4.2

ProgressBar

A horizontal bar to visualize task progress. The task being monitored can be of known or indeterminate length.

macOS

Linux

Windows

Android

iOS

Web

Textual ×××

Screenshot not available

Not supported

Usage

If a progress bar has a max value, it is a determinate progress bar. The value of the progress bar can be altered over
time, indicating progress on a task. The visual indicator of the progress bar will be filled indicating the proportion of
value relative to max. max can be any positive numerical value.

import toga

progress = toga.ProgressBar(max=100, value=1)

Start progress animation
progress.start()

Update progress to 10%
progress.value = 10

Stop progress animation
progress.stop()

If a progress bar does not have a max value (i.e., max == None), it is an indeterminate progress bar. Any change to
the value of an indeterminate progress bar will be ignored. When started, an indeterminate progress bar animates as a
throbbing or “ping pong” animation.

166 Chapter 2. Community

Toga Documentation, Release 0.4.2

import toga

progress = toga.ProgressBar(max=None)

Start progress animation
progress.start()

Stop progress animation
progress.stop()

Notes

• The visual appearance of progress bars varies from platform to platform. Toga will try to provide a visual
distinction between running and not-running determinate progress bars, but this cannot be guaranteed.

Reference

class toga.ProgressBar(id=None, style=None, max=1.0, value=0.0, running=False)
Bases: Widget

Create a new Progress Bar widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• max (float) – The value that represents completion of the task. Must be > 0.0; defaults to
1.0. A value of None indicates that the task length is indeterminate.

• value (float) – The current progress against the maximum value. Must be between 0.0
and max; any value outside this range will be clipped. Defaults to 0.0.

• running (bool) – Describes whether the indicator is running at the time it is created. Default
is False.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

ProgressBar widgets cannot be disabled; this property will always return True; any attempt to modify it
will be ignored.

property is_determinate: bool

Describe whether the progress bar has a known or indeterminate maximum.

True if the progress bar has determinate length; False otherwise.

2.3. Reference 167

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

property is_running: bool

Describe if the activity indicator is currently running.

Use start() and stop() to change the running state.

True if this activity indicator is running; False otherwise.

property max: float | None

The value indicating completion of the task being monitored.

Must be a number > 0, or None for a task of indeterminate length.

start()

Start the progress bar.

If the progress bar is already started, this is a no-op.

stop()

Stop the progress bar.

If the progress bar is already stopped, this is a no-op.

property value: float

The current value of the progress indicator.

If the progress bar is determinate, the value must be between 0 and max. Any value outside this range will
be clipped.

If the progress bar is indeterminate, changes in value will be ignored, and the current value will be returned
as None.

Selection

A widget to select a single option from a list of alternatives.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

168 Chapter 2. Community

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.4.2

Usage

The Selection uses a ListSource to manage the list of options. If items is not specified as a ListSource, it will be
converted into a ListSource at runtime.

The simplest instantiation of a Selection is to use a list of strings. If a list of non-string objects are provided, they will
be converted into a string for display purposes, but the original data type will be retained when returning the current
value. If the string value contains newlines, only the substring up to the first newline will be displayed.

import toga

selection = toga.Selection(items=["Alice", "Bob", "Charlie"])

Change the selection to "Charlie"
selection.value = "Charlie"

Which item is currently selected? This will print "Charlie"
print(f"Currently selected: {selection.value}")

A Selection can also be used to display a list of dictionaries, with the accessor detailing which attribute of the
dictionary will be used for display purposes. When the current value of the widget is retrieved, a Row object will be
returned; this Row object will have all the original data as attributes on the Row. In the following example, the GUI
will only display the names in the list of items, but the age will be available as an attribute on the selected item.

import toga

selection = toga.Selection(
items=[

{"name": "Alice", "age": 37},
{"name": "Bob", "age": 42},
{"name": "Charlie", "age": 24},

],
accessor="name",

)

Select Bob explicitly
selection.value = selection.items[1]

(continues on next page)

2.3. Reference 169

Toga Documentation, Release 0.4.2

(continued from previous page)

What is the age of the currently selected person? This will print 42
print(f"Age of currently selected person: {selection.value.age}")

Select Charlie by searching
selection.value = selection.items.find(name="Charlie")

Notes

• On macOS and Android, you cannot change the font of a Selection.

• On macOS, GTK and Android, you cannot change the text color, background color, or alignment of labels in a
Selection.

• On GTK, a Selection widget with flexible sizing will expand its width (to the extent possible possible) to accom-
modate any changes in content (for example, to accommodate a long label). However, if the content subsequently
decreases in width, the Selection widget will not shrink. It will retain the size necessary to accommodate the
longest label it has historically contained.

• On iOS, the size of the Selection widget does not adapt to the size of the currently displayed content, or the
potential list of options.

Reference

class toga.Selection(id=None, style=None, items=None, accessor=None, value=None, on_change=None,
enabled=True, on_select=None)

Bases: Widget

Create a new Selection widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• items (list | ListSource | None) – Initial items to display for selection.

• accessor (str | None) – The accessor to use to extract display values from the list of
items. See items and value for details on how accessor alters the interpretation of data
in the Selection.

• value (None) – Initial value for the selection. If unspecified, the first item in items will be
selected.

• on_change (callable | None) – Initial on_change handler.

• enabled – Whether the user can interact with the widget.

• on_select (callable | None) –

property items: ListSource

The items to display in the selection.

When setting this property:

• A Source will be used as-is. It must either be a ListSource, or a custom class that provides the same
methods.

170 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• A value of None is turned into an empty ListSource.

• Otherwise, the value must be an iterable, which is copied into a new ListSource using the widget’s
accessor, or “value” if no accessor was specified. Items are converted as shown here.

property on_change: callable

Handler to invoke when the value of the selection is changed, either by the user or programmatically.

property on_select: callable

Use on_change

Type
DEPRECATED

property value

The currently selected item.

Returns None if there are no items in the selection.

If an accessor was specified when the Selection was constructed, the value returned will be Row objects
from the ListSource; to change the selection, a Row object from the ListSource must be provided.

If no accessor was specified when the Selection was constructed, the value returned will be the value
stored as the value attribute on the Row object. When setting the value, the widget will search for the first
Row object whose value attribute matches the provided value. In practice, this means that you can treat
the selection as containing a list of literal values, rather than a ListSource containing Row objects.

Slider

A widget for selecting a value within a range. The range is shown as a horizontal line, and the selected value is shown
as a draggable marker.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

2.3. Reference 171

Toga Documentation, Release 0.4.2

Usage

A slider can either be continuous (allowing any value within the range), or discrete (allowing a fixed number of equally-
spaced values). For example:

import toga

def my_callback(slider):
print(slider.value)

Continuous slider, with an event handler.
toga.Slider(range=(-5, 10), value=7, on_change=my_callback)

Discrete slider, accepting the values [0, 1.5, 3, 4.5, 6, 7.5].
toga.Slider(range=(0, 7.5), tick_count=6)

Reference

class toga.Slider(id=None, style=None, value=None, min=None, max=None, tick_count=None,
on_change=None, on_press=None, on_release=None, enabled=True, range=None)

Bases: Widget

Create a new Slider widget.

Parameters

• id (str | None) – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (float | None) – Initial value of the slider. Defaults to the mid-point of the range.

• min (float) – Initial minimum value of the slider. Defaults to 0.

• max (float) – Initial maximum value of the slider. Defaults to 1.

• tick_count (int | None) – Initial tick_count for the slider. If None, the slider will be
continuous.

172 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

• on_change (callable | None) – Initial on_change handler.

• on_press (callable | None) – Initial on_press handler.

• on_release (callable | None) – Initial on_release handler.

• enabled (bool) – Whether the user can interact with the widget.

• range (tuple[float, float] | None) – DEPRECATED; use min and max instead.
Initial range of the slider. Defaults to (0, 1).

property max: float

Maximum allowed value.

When setting this property, the current value and min will be clipped against the new maximum value.

property min: float

Minimum allowed value.

When setting this property, the current value and max will be clipped against the new minimum value.

property on_change: callable

Handler to invoke when the value of the slider is changed, either by the user or programmatically.

Setting the widget to its existing value will not call the handler.

property on_press: callable

Handler to invoke when the user presses the slider before changing it.

property on_release: callable

Handler to invoke when the user releases the slider after changing it.

property range: tuple[float, float]

DEPRECATED; use min and max instead.

Range of allowed values, in the form (min, max).

If the provided min is greater than the max, both values will assume the value of the max.

If the current value is less than the provided min, the current value will be clipped to the minimum value. If
the current value is greater than the provided max, the current value will be clipped to the maximum value.

property tick_count: int | None

Number of tick marks to display on the slider.

• If this is None, the slider will be continuous.

• If this is an int, the slider will be discrete, and will have the given number of possible values, equally
spaced within the range.

Setting this property to an int will round the current value to the nearest tick.

Raises
ValueError – If set to a count which is not at least 2 (for the min and max).

Note: On iOS, tick marks are not currently displayed, but discrete mode will otherwise work correctly.

property tick_step: float | None

Step between adjacent ticks.

• If the slider is continuous, this property returns None

• If the slider is discrete, it returns the difference in value between adjacent ticks.

2.3. Reference 173

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

This property is read-only, and depends on the values of tick_count and range.

property tick_value: int | None

Value of the slider, measured in ticks.

• If the slider is continuous, this property returns None.

• If the slider is discrete, it returns an integer between 1 (representing min) and tick_count (repre-
senting max).

Raises
ValueError – If set to anything inconsistent with the rules above.

property value: float

Current value.

If the slider is discrete, setting the value will round it to the nearest tick.

Raises
ValueError – If set to a value which is outside of the range.

Switch

A clickable button with two stable states: True (on, checked); and False (off, unchecked). The button has a text label.

macOS

Linux

Windows

Android

iOS

Web

Textual ×××

Screenshot not available

Not supported

174 Chapter 2. Community

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.4.2

Usage

import toga

switch = toga.Switch()

What is the current state of the switch?
print(f"The switch is {switch.value}")

Notes

• The button and the label are considered a single widget for layout purposes.

• The visual appearance of a Switch is not guaranteed. On some platforms, it will render as a checkbox. On others,
it will render as a physical “switch” whose position (and color) indicates if the switch is active. When rendered
as a checkbox, the label will appear to the right of the checkbox. When rendered as a switch, the label will be
left-aligned, and the switch will be right-aligned.

• You should avoid setting a height style property on Switch widgets. The rendered height of the Switch widget
will be whatever the platform style guide considers appropriate; explicitly setting a height for the widget can
lead to widgets that have a distorted appearance.

• On macOS, the text color of the label cannot be set directly; any color style directive will be ignored.

2.3. Reference 175

Toga Documentation, Release 0.4.2

Reference

class toga.Switch(text, id=None, style=None, on_change=None, value=False, enabled=True)
Bases: Widget

Create a new Switch widget.

Parameters

• text – The text to display beside the switch.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (bool) – The initial value for the switch.

• on_change (callable | None) – A handler that will be invoked when the switch changes
value.

• enabled (bool) – Is the switch enabled (i.e., can it be pressed?). Optional; by default,
switches are created in an enabled state.

property on_change: callable

The handler to invoke when the value of the switch changes.

property text: str

The text label for the Switch.

None, and the Unicode codepoint U+200B (ZERO WIDTH SPACE), will be interpreted and returned as an
empty string. Any other object will be converted to a string using str().

Only one line of text can be displayed. Any content after the first newline will be ignored.

toggle()

Reverse the current value of the switch.

property value: bool

The current state of the switch, as a Boolean.

Any non-Boolean value will be converted to a Boolean.

Table

A widget for displaying columns of tabular data. Scroll bars will be provided if necessary.

macOS

Linux

Windows

Android

iOS ×××

Web ×××

Textual ×××

Not supported

Not supported

176 Chapter 2. Community

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

2.3. Reference 177

Toga Documentation, Release 0.4.2

Not supported

Usage

The simplest way to create a Table is to pass a list of tuples containing the items to display, and a list of column headings.
The values in the tuples will then be mapped sequentially to the columns.

In this example, we will display a table of 2 columns, with 3 initial rows of data:

import toga

table = toga.Table(
headings=["Name", "Age"],
data=[

("Arthur Dent", 42),
("Ford Prefect", 37),
("Tricia McMillan", 38),

]
)

Get the details of the first item in the data:
print(f"{table.data[0].name} is age {table.data[0].age}")

Append new data to the table
table.data.append(("Zaphod Beeblebrox", 47))

You can also specify data for a Table using a list of dictionaries. This allows you to store data in the data source that
won’t be displayed in the table. It also allows you to control the display order of columns independent of the storage of
that data.

import toga

table = toga.Table(
headings=["Name", "Age"],
data=[

{"name": "Arthur Dent", "age": 42, "planet": "Earth"},
(continues on next page)

178 Chapter 2. Community

Toga Documentation, Release 0.4.2

(continued from previous page)

{"name", "Ford Prefect", "age": 37, "planet": "Betelgeuse Five"},
{"name": "Tricia McMillan", "age": 38, "planet": "Earth"},

]
)

Get the details of the first item in the data:
row = table.data[0]
print(f"{row.name}, who is age {row.age}, is from {row.planet}")

The attribute names used on each row (called “accessors”) are created automatically from the headings, by:

1. Converting the heading to lower case

2. Removing any character that can’t be used in a Python identifier

3. Replacing all whitespace with _

4. Prepending _ if the first character is a digit

If you want to use different attributes, you can override them by providing an accessors argument. In this example,
the table will use “Name” as the visible header, but internally, the attribute “character” will be used:

import toga

table = toga.Table(
headings=["Name", "Age"],
accessors={"Name", 'character'},
data=[

{"character": "Arthur Dent", "age": 42, "planet": "Earth"},
{"character", "Ford Prefect", "age": 37, "planet": "Betelgeuse Five"},
{"name": "Tricia McMillan", "age": 38, "planet": "Earth"},

]
)

Get the details of the first item in the data:
row = table.data[0]
print(f"{row.character}, who is age {row.age}, is from {row.planet}")

The value provided by an accessor is interpreted as follows:

• If the value is a Widget, that widget will be displayed in the cell. Note that this is currently a beta API: see the
Notes section.

• If the value is a tuple, it must have two elements: an icon, and a second element which will be interpreted as
one of the options below.

• If the value is None, then missing_value will be displayed.

• Any other value will be converted into a string. If an icon has not already been provided in a tuple, it can also be
provided using the value’s icon attribute.

Icon values must either be an Icon, which will be displayed on the left of the cell, or None to display no icon.

2.3. Reference 179

https://docs.python.org/3/library/stdtypes.html#tuple

Toga Documentation, Release 0.4.2

Notes

• Widgets in cells is a beta API which may change in future, and is currently only supported on macOS.

• macOS does not support changing the font used to render table content.

• On Winforms, icons are only supported in the first column. On Android, icons are not supported at all.

• The Android implementation is not scalable beyond about 1,000 cells.

Reference

class toga.Table(headings=None, id=None, style=None, data=None, accessors=None, multiple_select=False,
on_select=None, on_activate=None, missing_value='', on_double_click=None)

Bases: Widget

Create a new Table widget.

Parameters

• headings (list[str] | None) – The column headings for the table. Headings can only
contain one line; any text after a newline will be ignored.

A value of None will produce a table without headings. However, if you do this, you must
give a list of accessors.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• data (Any) – Initial data to be displayed in the table.

• accessors (list[str] | None) – Defines the attributes of the data source that will be
used to populate each column. Must be either:

– None to derive accessors from the headings, as described above; or

– A list of the same size as headings, specifying the accessors for each heading. A value
of None will fall back to the default generated accessor; or

– A dictionary mapping headings to accessors. Any missing headings will fall back to the
default generated accessor.

• multiple_select (bool) – Does the table allow multiple selection?

• on_select (callable | None) – Initial on_select handler.

• on_activate (callable | None) – Initial on_activate handler.

• missing_value (str) – The string that will be used to populate a cell when the value
provided by its accessor is None, or the accessor isn’t defined.

• on_double_click – DEPRECATED; use on_activate.

property accessors: list[str]

The accessors used to populate the table (read-only)

add_column(heading, accessor=None)
DEPRECATED: use append_column()

Parameters

• heading (str) –

180 Chapter 2. Community

https://github.com/beeware/toga/issues/1392
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• accessor (str | None) –

append_column(heading, accessor=None)
Append a column to the end of the table.

Parameters

• heading (str) – The heading for the new column.

• accessor (str | None) – The accessor to use on the data source when populating the
table. If not specified, an accessor will be derived from the heading.

property data: ListSource

The data to display in the table.

When setting this property:

• A Source will be used as-is. It must either be a ListSource, or a custom class that provides the same
methods.

• A value of None is turned into an empty ListSource.

• Otherwise, the value must be an iterable, which is copied into a new ListSource. Items are converted
as shown here.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget? Table widgets cannot be
disabled; this property will always return True; any attempt to modify it will be ignored.

focus()

No-op; Table cannot accept input focus

property headings: list[str] | None

The column headings for the table, or None if there are no headings (read-only)

insert_column(index, heading, accessor=None)
Insert an additional column into the table.

Parameters

• index (int | str) – The index at which to insert the column, or the accessor of the
column before which the column should be inserted.

• heading (str | None) – The heading for the new column. If the table doesn’t have head-
ings, the value will be ignored.

• accessor (str | None) – The accessor to use on the data source when populating the
table. If not specified, an accessor will be derived from the heading. An accessor must be
specified if the table doesn’t have headings.

property missing_value: str

The value that will be used when a data row doesn’t provide an value for an attribute.

property multiple_select: bool

Does the table allow multiple rows to be selected?

property on_activate: callable

The callback function that is invoked when a row of the table is activated, usually with a double click or
similar action.

2.3. Reference 181

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

property on_double_click

Use on_activate

Type
DEPRECATED

property on_select: callable

The callback function that is invoked when a row of the table is selected.

remove_column(column)
Remove a table column.

Parameters
column (int | str) – The index of the column to remove, or the accessor of the column to
remove.

scroll_to_bottom()

Scroll the view so that the bottom of the list (last row) is visible.

scroll_to_row(row)
Scroll the view so that the specified row index is visible.

Parameters
row (int) – The index of the row to make visible. Negative values refer to the nth last row
(-1 is the last row, -2 second last, and so on).

scroll_to_top()

Scroll the view so that the top of the list (first row) is visible.

property selection: list[Row] | Row | None

The current selection of the table.

If multiple selection is enabled, returns a list of Row objects from the data source matching the current
selection. An empty list is returned if no rows are selected.

If multiple selection is not enabled, returns the selected Row object, or None if no row is currently selected.

TextInput

A widget for the display and editing of a single line of text.

macOS

Linux

Windows

Android

iOS

Web

Textual

Screenshot not available

182 Chapter 2. Community

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

Screenshot not available

Usage

import toga

text_input = toga.TextInput()
text_input.value = "Jane Developer"

The input can be provided a placeholder value - this is a value that will be displayed to the user as a prompt for
appropriate content for the widget. This placeholder will only be displayed if the widget has no content; as soon as a
value is provided (either by the user, or programmatically), the placeholder content will be hidden.

The input can also be provided a list of validators. A validator is a function that will be invoked whenever the content
of the input changes. The function should return None if the current value of the input is valid; if the current value is
invalid, it should return an error message.

Notes

• Although an error message is provided when validation fails, Toga does not guarantee that this error message
will be displayed to the user.

• Winforms does not support the use of partially or fully transparent colors for the TextInput background. If a color
with an alpha value is provided (including TRANSPARENT), the alpha channel will be ignored. A TRANSPARENT
background will be rendered as white.

• On Winforms, if a TextInput is given an explicit height, the rendered widget will not expand to fill that space.
The widget will have the fixed height determined by the font used on the widget. In general, you should avoid
setting a height style property on TextInput widgets.

2.3. Reference 183

Toga Documentation, Release 0.4.2

Reference

class toga.TextInput(id=None, style=None, value=None, readonly=False, placeholder=None,
on_change=None, on_confirm=None, on_gain_focus=None, on_lose_focus=None,
validators=None)

Bases: Widget

Create a new single-line text input widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (str | None) – The initial content to display in the widget.

• readonly (bool) – Can the value of the widget be modified by the user?

• placeholder (str | None) – The content to display as a placeholder when there is no
user content to display.

• on_change (callable | None) – A handler that will be invoked when the the value of the
widget changes.

• on_confirm (callable | None) – A handler that will be invoked when the user accepts
the value of the input (usually by pressing Return on the keyboard).

• on_gain_focus (callable | None) – A handler that will be invoked when the widget
gains input focus.

• on_lose_focus (callable | None) – A handler that will be invoked when the widget
loses input focus.

• validators (list[callable] | None) – A list of validators to run on the value of the
input.

property is_valid: bool

Does the value of the widget currently pass all validators without error?

property on_change: callable

The handler to invoke when the value of the widget changes.

property on_confirm: callable

The handler to invoke when the user accepts the value of the widget, usually by pressing return/enter on
the keyboard.

property on_gain_focus: callable

The handler to invoke when the widget gains input focus.

property on_lose_focus: callable

The handler to invoke when the widget loses input focus.

184 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

property placeholder: str

The placeholder text for the widget.

A value of None will be interpreted and returned as an empty string. Any other object will be converted to
a string using str().

property readonly: bool

Can the value of the widget be modified by the user?

This only controls manual changes by the user (i.e., typing at the keyboard). Programmatic changes are
permitted while the widget has readonly enabled.

property validators: list[callable]

The list of validators being used to check input on the widget.

Changing the list of validators will cause validation to be performed.

property value: str

The text to display in the widget.

A value of None will be interpreted and returned as an empty string. Any other object will be converted to
a string using str().

Any newline (\n) characters in the string will be replaced with a space.

Validation will be performed as a result of changing widget value.

TimeInput

A widget to select a clock time.

macOS ×××

Linux ×××

Windows

Android

iOS ×××

Web ×××

Textual ×××

Not supported

Not supported

Not supported

2.3. Reference 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Not supported

Not supported

Usage

import toga

current_time = toga.TimeInput()

Notes

• This widget supports hours, minutes and seconds. Microseconds will always be returned as zero.

– On Android, seconds will also be returned as zero.

• Properties that return datetime.time objects can also accept:

– datetime.datetime: The time portion will be extracted.

– str: Will be parsed as an ISO8601 format time string (e.g., “06:12”).

Reference

class toga.TimeInput(id=None, style=None, value=None, min=None, max=None, on_change=None)
Bases: Widget

Create a new TimeInput widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value (datetime.time | None) – The initial time to display. If not specified, the current
time will be used.

• min (datetime.time | None) – The earliest time (inclusive) that can be selected.

• max (datetime.time | None) – The latest time (inclusive) that can be selected.

• on_change (callable | None) – A handler that will be invoked when the value changes.

property max: time

The maximum allowable time (inclusive). A value of None will be converted into 23:59:59.

When setting this property, the current value and min will be clipped against the new maximum value.

property min: time

The minimum allowable time (inclusive). A value of None will be converted into 00:00:00.

When setting this property, the current value and max will be clipped against the new minimum value.

property on_change: callable

The handler to invoke when the time value changes.

186 Chapter 2. Community

https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time

Toga Documentation, Release 0.4.2

property value: time

The currently selected time. A value of None will be converted into the current time.

If this property is set to a value outside of the min/max range, it will be clipped.

Tree

A widget for displaying a hierarchical tree of tabular data. Scroll bars will be provided if necessary.

macOS

Linux

Windows ×××

Android ×××

iOS ×××

Web ×××

Textual ×××

Not supported

Not supported

Not supported

Not supported

2.3. Reference 187

https://docs.python.org/3/library/datetime.html#datetime.time

Toga Documentation, Release 0.4.2

Not supported

Usage

The simplest way to create a Tree is to pass a dictionary and a list of column headings. Each key in the dictionary can
be either a tuple, whose contents will be mapped sequentially to the columns of a node, or a single object, which will be
mapped to the first column. And each value in the dictionary can be either another dictionary containing the children
of that node, or None if there are no children.

In this example, we will display a tree with 2 columns. The tree will have 2 root nodes; the first root node will have 1
child node; the second root node will have 2 children. The root nodes will only populate the “name” column; the other
column will be blank:

import toga

tree = toga.Tree(
headings=["Name", "Age"],
data={

"Earth": {
("Arthur Dent", 42): None,

},
"Betelgeuse Five": {

("Ford Prefect", 37): None,
("Zaphod Beeblebrox", 47): None,

},
}

)

Get the details of the first child of the second root node:
print(f"{tree.data[1][0].name} is age {tree.data[1][0].age}")

Append new data to the first root node in the tree
tree.data[0].append(("Tricia McMillan", 38))

You can also specify data for a Tree using a list of 2-tuples, with dictionaries providing data values. This allows you
to store data in the data source that won’t be displayed in the tree. It also allows you to control the display order of
columns independent of the storage of that data.

import toga

tree = toga.Tree(
headings=["Name", "Age"],
data=[

(
{"name": "Earth"},
[({"name": "Arthur Dent", "age": 42, "status": "Anxious"}, None)]

),
(

{"name": "Betelgeuse Five"},
[

({"name": "Ford Prefect", "age": 37, "status": "Hoopy"}, None),
({"name": "Zaphod Beeblebrox", "age": 47, "status": "Oblivious"}, None),

]
(continues on next page)

188 Chapter 2. Community

Toga Documentation, Release 0.4.2

(continued from previous page)

),
]

)

Get the details of the first child of the second root node:
node = tree.data[1][0]
print(f"{node.name}, who is age {node.age}, is {node.status}")

The attribute names used on each row (called “accessors”) are created automatically from the headings, by:

1. Converting the heading to lower case

2. Removing any character that can’t be used in a Python identifier

3. Replacing all whitespace with _

4. Prepending _ if the first character is a digit

If you want to use different attributes, you can override them by providing an accessors argument. In this example,
the tree will use “Name” as the visible header, but internally, the attribute “character” will be used:

import toga

tree = toga.Tree(
headings=["Name", "Age"],
accessors={"Name", 'character'},
data=[

(
{"character": "Earth"},
[({"character": "Arthur Dent", "age": 42, "status": "Anxious"}, None)]

),
(

{"character": "Betelgeuse Five"},
[

({"character": "Ford Prefect", "age": 37, "status": "Hoopy"}, None),
({"character": "Zaphod Beeblebrox", "age": 47, "status": "Oblivious"},␣

→˓None),
]

),
]

)

Get the details of the first child of the second root node:
node = tree.data[1][0]
print(f"{node.character}, who is age {node.age}, is {node.status}")

The value provided by an accessor is interpreted as follows:

• If the value is a Widget, that widget will be displayed in the cell. Note that this is currently a beta API: see the
Notes section.

• If the value is a tuple, it must have two elements: an icon, and a second element which will be interpreted as
one of the options below.

• If the value is None, then missing_value will be displayed.

2.3. Reference 189

https://docs.python.org/3/library/stdtypes.html#tuple

Toga Documentation, Release 0.4.2

• Any other value will be converted into a string. If an icon has not already been provided in a tuple, it can also be
provided using the value’s icon attribute.

Icon values must either be an Icon, which will be displayed on the left of the cell, or None to display no icon.

Notes

• Widgets in cells is a beta API which may change in future, and is currently only supported on macOS.

• On macOS, you cannot change the font used in a Tree.

Reference

class toga.Tree(headings=None, id=None, style=None, data=None, accessors=None, multiple_select=False,
on_select=None, on_activate=None, missing_value='', on_double_click=None)

Bases: Widget

Create a new Tree widget.

Parameters

• headings (list[str] | None) – The column headings for the tree. Headings can only
contain one line; any text after a newline will be ignored.

A value of None will produce a table without headings. However, if you do this, you must
give a list of accessors.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• data (Any) – Initial data to be displayed in the tree.

• accessors (list[str] | None) – Defines the attributes of the data source that will be
used to populate each column. Must be either:

– None to derive accessors from the headings, as described above; or

– A list of the same size as headings, specifying the accessors for each heading. A value
of None will fall back to the default generated accessor; or

– A dictionary mapping headings to accessors. Any missing headings will fall back to the
default generated accessor.

• multiple_select (bool) – Does the tree allow multiple selection?

• on_select (callable | None) – Initial on_select handler.

• on_activate (callable | None) – Initial on_activate handler.

• missing_value (str) – The string that will be used to populate a cell when the value
provided by its accessor is None, or the accessor isn’t defined.

• on_double_click – DEPRECATED; use on_activate.

property accessors: list[str]

The accessors used to populate the tree (read-only)

190 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

append_column(heading, accessor=None)
Append a column to the end of the tree.

Parameters

• heading (str) – The heading for the new column.

• accessor (str | None) – The accessor to use on the data source when populating the
tree. If not specified, an accessor will be derived from the heading.

collapse(node=None)
Collapse the specified node of the tree.

If no node is provided, all nodes of the tree will be collapsed.

If the provided node is a leaf node, or the node is already collapsed, this is a no-op.

Parameters
node (Node | None) – The node to collapse

property data: TreeSource

The data to display in the tree.

When setting this property:

• A Source will be used as-is. It must either be a TreeSource, or a custom class that provides the same
methods.

• A value of None is turned into an empty TreeSource.

• Otherwise, the value must be an dictionary or an iterable, which is copied into a new TreeSource as
shown here.

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget? Tree widgets cannot be disabled;
this property will always return True; any attempt to modify it will be ignored.

expand(node=None)
Expand the specified node of the tree.

If no node is provided, all nodes of the tree will be expanded.

If the provided node is a leaf node, or the node is already expanded, this is a no-op.

If a node is specified, the children of that node will also be expanded.

Parameters
node (Node | None) – The node to expand

focus()

No-op; Tree cannot accept input focus

property headings: list[str]

The column headings for the tree (read-only)

insert_column(index, heading, accessor=None)
Insert an additional column into the tree.

Parameters

• index (int | str) – The index at which to insert the column, or the accessor of the
column before which the column should be inserted.

2.3. Reference 191

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• heading (str | None) – The heading for the new column. If the tree doesn’t have head-
ings, the value will be ignored.

• accessor (str | None) – The accessor to use on the data source when populating the
tree. If not specified, an accessor will be derived from the heading. An accessor must be
specified if the tree doesn’t have headings.

property missing_value: str

The value that will be used when a data row doesn’t provide an value for an attribute.

property multiple_select: bool

Does the tree allow multiple rows to be selected?

property on_activate: callable

The callback function that is invoked when a row of the tree is activated, usually with a double click or
similar action.

property on_double_click

Use on_activate

Type
DEPRECATED

property on_select: callable

The callback function that is invoked when a row of the tree is selected.

remove_column(column)
Remove a tree column.

Parameters
column (int | str) – The index of the column to remove, or the accessor of the column to
remove.

property selection: list[Node] | Node | None

The current selection of the tree.

If multiple selection is enabled, returns a list of Node objects from the data source matching the current
selection. An empty list is returned if no nodes are selected.

If multiple selection is not enabled, returns the selected Node object, or None if no node is currently selected.

WebView

An embedded web browser.

macOS

Linux

Windows

Android

iOS

Web ×××

Textual ×××

Not supported

Not supported

192 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

2.3. Reference 193

Toga Documentation, Release 0.4.2

194 Chapter 2. Community

Toga Documentation, Release 0.4.2

Usage

import toga

webview = toga.WebView()

Request a URL be loaded in the webview.
webview.url = "https://beeware.org"

Load a URL, and wait (non-blocking) for the page to complete loading
await webview.load_url("https://beeware.org")

Load static HTML content into the wevbiew.
webview.set_content("https://example.com", "<html>...</html>")

Notes

• Due to app security restrictions, WebView can only display http:// and https:// URLs, not file:// URLs.
To serve local file content, run a web server on localhost using a background thread.

• Using WebView on Windows 10 requires that your users have installed the Edge WebView2 Evergreen Runtime.
This is installed by default on Windows 11.

• Using WebView on Linux requires that the user has installed the system packages for WebKit2, plus the GObject
Introspection bindings for WebKit2.

• On macOS 13.3 (Ventura) and later, the content inspector for your app can be opened by running Safari, enabling
the developer tools, and selecting your app’s window from the “Develop” menu.

2.3. Reference 195

https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download
https://support.apple.com/en-au/guide/safari/sfri20948/mac
https://support.apple.com/en-au/guide/safari/sfri20948/mac

Toga Documentation, Release 0.4.2

On macOS versions prior to Ventura, the content inspector is not enabled by default, and is only available when
your code is packaged as a full macOS app (e.g., with Briefcase). To enable debugging, run:

$ defaults write com.example.appname WebKitDeveloperExtras -bool true

Substituting com.example.appname with the bundle ID for your packaged app.

Reference

class toga.WebView(id=None, style=None, url=None, user_agent=None, on_webview_load=None)
Bases: Widget

Create a new WebView widget.

Parameters

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• url (str | None) – The full URL to load in the WebView. If not provided, an empty page
will be displayed.

• user_agent (str | None) – The user agent to use for web requests. If not provided, the
default user agent for the platform will be used.

• on_webview_load (callable | None) – A handler that will be invoked when the web
view finishes loading.

evaluate_javascript(javascript, on_result=None)
Evaluate a JavaScript expression.

This is an asynchronous method. There is no guarantee that the JavaScript has finished evaluating when
this method returns. The object returned by this method can be awaited to obtain the value of the expression.

Note: On Android and Windows, no exception handling is performed. If a JavaScript error occurs, a return
value of None will be reported, but no exception will be provided.

Parameters

• javascript – The JavaScript expression to evaluate.

• on_result – DEPRECATED await the return value of this method.

Return type
JavaScriptResult

async load_url(url)
Load a URL, and wait until the next on_webview_load event.

Note: On Android, this method will return immediately.

Parameters
url (str) – The URL to load.

property on_webview_load: callable

The handler to invoke when the web view finishes loading.

Rendering web content is a complex, multi-threaded process. Although a page may have completed loading,
there’s no guarantee that the page has been fully rendered, or that the widget representation has been fully
updated. The number of load events generated by a URL transition or content change can be unpredictable.
An on_webview_load event should be interpreted as an indication that some change has occurred, not

196 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

that a specific change has occurred, or that a specific change has been fully propagated into the rendered
content.

Note: This is not currently supported on Android.

set_content(root_url, content)
Set the HTML content of the WebView.

Note: On Android and Windows, the root_url argument is ignored. Calling this method will set the url
property to None.

Parameters

• root_url (str) – A URL which will be returned by the url property, and used to resolve
any relative URLs in the content.

• content (str) – The HTML content for the WebView

property url: str | None

The current URL, or None if no URL is currently displayed.

After setting this property, it is not guaranteed that reading the property will immediately return the new
value. To be notified once the URL has finished loading, use load_url or on_webview_load .

property user_agent: str

The user agent to use for web requests.

Note: On Windows, this property will return an empty string until the widget has finished initializing.

Widget

The abstract base class of all widgets. This class should not be be instantiated directly.

Table 15: Availability (Key)

macOS GTK Windows iOS Android Web Terminal

Reference

class toga.Widget(id=None, style=None)
Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters

• id (str | None) – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

add(*children)
Add the provided widgets as children of this widget.

If a child widget already has a parent, it will be re-parented as a child of this widget. If the child widget is
already a child of this widget, there is no change.

Parameters
children (Widget) – The widgets to add as children of this widget.

2.3. Reference 197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

Raises
ValueError – If this widget cannot have children.

Return type
None

property app: App | None

The App to which this widget belongs.

When setting the app for a widget, all children of this widget will be recursively assigned to the same app.

Raises
ValueError – If this widget is already associated with another app.

property can_have_children

Determine if the node can have children.

This does not resolve whether there actually are any children; it only confirms whether children are theo-
retically allowed.

property children

The children of this node. This always returns a list, even if the node is a leaf and cannot have children.

Returns
A list of the children for this widget.

clear()

Remove all child widgets of this node.

Refreshes the widget after removal if any children were removed.

Raises
ValueError – If this widget cannot have children.

Return type
None

property enabled: bool

Is the widget currently enabled? i.e., can the user interact with the widget?

focus()

Give this widget the input focus.

This method is a no-op if the widget can’t accept focus. The ability of a widget to accept focus is platform-
dependent. In general, on desktop platforms you can focus any widget that can accept user input, while
on mobile platforms focus is limited to widgets that accept text input (i.e., widgets that cause the virtual
keyboard to appear).

Return type
None

property id: str

The DOM identifier for the widget.

This id can be used to target CSS directives.

insert(index, child)
Insert a widget as a child of this widget.

If a child widget already has a parent, it will be re-parented as a child of this widget. If the child widget is
already a child of this widget, there is no change.

Parameters

198 Chapter 2. Community

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.4.2

• index (int) – The position in the list of children where the new widget should be added.

• child (Widget) – The child to insert as a child of this node.

Raises
ValueError – If this widget cannot have children.

Return type
None

property parent

The parent of this node.

Returns
The parent of this node. Returns None if this node is the root node.

refresh()

Refresh the layout and appearance of the tree this node is contained in.

Return type
None

remove(*children)
Remove the provided widgets as children of this node.

Any nominated child widget that is not a child of this widget will not have any change in parentage.

Refreshes the widget after removal if any children were removed.

Parameters
children (Widget) – The child nodes to remove.

Raises
ValueError – If this widget cannot have children.

Return type
None

property root

The root of the tree containing this node.

Returns
The root node. Returns self if this node is the root node.

property tab_index: int | None

The position of the widget in the focus chain for the window.

Note: This is a beta feature. The tab_index API may change in future.

property window: Window | None

The window to which this widget belongs.

When setting the window for a widget, all children of this widget will be recursively assigned to the same
window.

If the widget has a value for window, it must also have a value for app.

2.3. Reference 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.4.2

Constants

class toga.constants.Direction(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: Enum

The direction a given property should act

HORIZONTAL = 0

VERTICAL = 1

class toga.constants.Baseline(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

The meaning of a Y coordinate when drawing text.

ALPHABETIC = 1

Alphabetic baseline of the first line

TOP = 2

Top of text

MIDDLE = 3

Middle of text

BOTTOM = 4

Bottom of text

class toga.constants.FillRule(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

The rule to use when filling paths.

EVENODD = 0

NONZERO = 1

class toga.constants.FlashMode(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: Enum

The flash mode to use when capturing photos or videos.

AUTO = -1

OFF = 0

ON = 1

200 Chapter 2. Community

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

Toga Documentation, Release 0.4.2

Keys

A symbolic representation of keys used for keyboard shortcuts.

Most keys have a constant that matches the text on the key, or the name of the key if the text on the key isn’t a legal
Python identifier.

However, due to differences between platforms, there’s no representation of “modifier” keys like Control, Command,
Option, or the Windows Key. Instead, Toga provides three generic modifier constants, and maps those to the modifier
keys, matching the precedence with which they are used on the underlying platforms:

Platform MOD_1 MOD_2 MOD_3

Linux Control Alt Tux/Windows/Meta
macOS Command () Option Control (^)
Windows Control Alt Not supported

Key combinations can be expressed by combining multiple Key values with the + operator.

from toga import Key

just_an_a = Key.A
shift_a = Key.SHIFT + Key.A
Windows/Linux - Control-Shift-A:
macOS - Command-Shift-A:
modified_shift_a = Key.MOD_1 + Key.SHIFT + Key.A

The order of addition is not significant. Key.SHIFT + Key.A and Key.A + Key.SHIFT will produce the same key
representation.

Reference

class toga.Key(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
Bases: Enum

An enumeration providing a symbolic representation for the characters on a keyboard.

A = 'a'

AMPERSAND = '&'

ASTERISK = '*'

AT = '@'

B = 'b'

BACKSLASH = '\\'

BACKSPACE = '<backspace>'

BACK_QUOTE = '`'

C = 'c'

CAPSLOCK = '<caps lock>'

2.3. Reference 201

https://docs.python.org/3/library/enum.html#enum.Enum

Toga Documentation, Release 0.4.2

CARET = '^'

CLOSE_BRACE = '}'

CLOSE_BRACKET = ']'

CLOSE_PARENTHESIS = ')'

COLON = ':'

COMMA = ','

D = 'd'

DELETE = '<delete>'

DOLLAR = '$'

DOUBLE_QUOTE = '"'

DOWN = '<down>'

E = 'e'

EJECT = '<eject>'

END = '<end>'

ENTER = '<enter>'

EQUAL = '='

ESCAPE = '<esc>'

EXCLAMATION = '!'

F = 'f'

F1 = '<f1>'

F10 = '<f10>'

F11 = '<f11>'

F12 = '<f12>'

F13 = '<f13>'

F14 = '<f14>'

F15 = '<f15>'

F16 = '<f16>'

F17 = '<f17>'

F18 = '<f18>'

F19 = '<f19>'

F2 = '<f2>'

202 Chapter 2. Community

Toga Documentation, Release 0.4.2

F3 = '<f3>'

F4 = '<f4>'

F5 = '<f5>'

F6 = '<f6>'

F7 = '<f7>'

F8 = '<f8>'

F9 = '<f9>'

FULL_STOP = '.'

G = 'g'

GREATER_THAN = '>'

H = 'h'

HASH = '#'

HOME = '<home>'

I = 'i'

J = 'j'

K = 'k'

L = 'l'

LEFT = '<left>'

LESS_THAN = '<'

M = 'm'

MINUS = '-'

MOD_1 = '<mod 1>'

MOD_2 = '<mod 2>'

MOD_3 = '<mod 3>'

N = 'n'

NUMPAD_0 = 'numpad:0'

NUMPAD_1 = 'numpad:1'

NUMPAD_2 = 'numpad:2'

NUMPAD_3 = 'numpad:3'

NUMPAD_4 = 'numpad:4'

NUMPAD_5 = 'numpad:5'

2.3. Reference 203

Toga Documentation, Release 0.4.2

NUMPAD_6 = 'numpad:6'

NUMPAD_7 = 'numpad:7'

NUMPAD_8 = 'numpad:8'

NUMPAD_9 = 'numpad:9'

NUMPAD_CLEAR = 'numpad:clear'

NUMPAD_DECIMAL_POINT = 'numpad:.'

NUMPAD_DIVIDE = 'numpad:/'

NUMPAD_ENTER = 'numpad:enter'

NUMPAD_EQUAL = 'numpad:='

NUMPAD_MINUS = 'numpad:-'

NUMPAD_MULTIPLY = 'numpad:*'

NUMPAD_PLUS = 'numpad:+'

O = 'o'

OPEN_BRACE = '{'

OPEN_BRACKET = '['

OPEN_PARENTHESIS = '('

P = 'p'

PAGE_DOWN = '<pg dn>'

PAGE_UP = '<pg up>'

PERCENT = '%'

PIPE = '|'

PLUS = '+'

Q = 'q'

QUESTION = '?'

QUOTE = "'"

R = 'r'

RIGHT = '<right>'

S = 's'

SEMICOLON = ';'

SHIFT = '<shift>'

SLASH = '/'

204 Chapter 2. Community

Toga Documentation, Release 0.4.2

SPACE = ' '

T = 't'

TAB = '<tab>'

TILDE = '~'

U = 'u'

UNDERSCORE = '_'

UP = '<up>'

V = 'v'

W = 'w'

X = 'x'

Y = 'y'

Z = 'z'

is_printable()

Does pressing the key result in a printable character?

Return type
bool

2.3.4 Style

The Pack Style Engine

Toga’s default style engine, Pack, is a layout algorithm based around the idea of packing boxes inside boxes. Each
box specifies a direction for its children, and each child specifies how it will consume the available space - either as a
specific width, or as a proportion of the available width. Other properties exist to control color, text alignment and so
on.

It is similar in some ways to the CSS Flexbox algorithm; but dramatically simplified, as there is no allowance for
overflowing boxes.

Note: The string values defined here are the string literals that the Pack algorithm accepts. These values are also
pre-defined as Python constants in the toga.style.pack module with the same name; however, following Python
style, the constants use upper case. For example, the Python constant toga.style.pack.COLUMN evaluates as the
string literal "column".

2.3. Reference 205

https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.4.2

Pack style properties

display

Values: pack | none

Initial value: pack

Used to define the how to display the element. A value of pack will apply the pack layout algorithm to this node and
its descendants. A value of none removes the element from the layout entirely. Space will be allocated for the element
as if it were there, but the element itself will not be visible.

visibility

Values: hidden | visible

Initial value: visible

Used to define whether the element should be drawn. A value of visible means the element will be displayed. A
value of hidden removes the element from view, but allocates space for the element as if it were still in the layout.

Any children of a hidden element are implicitly removed from view.

If a previously hidden element is made visible, any children of the element with a visibility of hidden will remain
hidden. Any descendants of the hidden child will also remain hidden, regardless of their visibility.

direction

Values: row | column

Initial value: row

The packing direction for children of the box. A value of column indicates children will be stacked vertically, from
top to bottom. A value of row indicates children will be packed horizontally; left-to-right if text_direction is ltr,
or right-to-left if text_direction is rtl.

alignment

Values: top | bottom | left | right | center

Initial value: top if direction is row; left if direction is column

The alignment of children relative to the outside of the packed box.

If the box is a column box, only the values left, right and center are honored.

If the box is a row box, only the values top, bottom and center are honored.

If a value is provided, but the value isn’t honored, the alignment reverts to the default for the direction.

206 Chapter 2. Community

Toga Documentation, Release 0.4.2

width

Values: <integer> | none

Initial value: none

Specify a fixed width for the box, in CSS pixels.

The final width for the box may be larger, if the children of the box cannot fit inside the specified space.

height

Values: <integer> | none

Initial value: none

Specify a fixed height for the box, in CSS pixels.

The final height for the box may be larger, if the children of the box cannot fit inside the specified space.

flex

Values: <number>

Initial value: 0

A weighting that is used to compare this box with its siblings when allocating remaining space in a box.

Once fixed space allocations have been performed, this box will assume flex / (sum of all flex for all
siblings) of all remaining available space in the direction of the parent’s layout.

padding_top

padding_right

padding_bottom

padding_left

Values: <integer>

Initial value: 0

The amount of space to allocate between the edge of the box, and the edge of the content in the box, in CSS pixels.

2.3. Reference 207

Toga Documentation, Release 0.4.2

padding

Values: <integer> or <tuple> of length 1-4

A shorthand for setting the top, right, bottom and left padding with a single declaration.

If 1 integer is provided, that value will be used as the padding for all sides.

If 2 integers are provided, the first value will be used as the padding for the top and bottom; the second will be used as
the value for the left and right.

If 3 integers are provided, the first value will be used as the top padding, the second for the left and right padding, and
the third for the bottom padding.

If 4 integers are provided, they will be used as the top, right, bottom and left padding, respectively.

color

Values: <color>

Initial value: System default

Set the foreground color for the object being rendered.

Some objects may not use the value.

background_color

Values: <color> | transparent

Initial value: The platform default background color

Set the background color for the object being rendered.

Some objects may not use the value.

text_align

Values: left | right | center | justify

Initial value: left if text_direction is ltr; right if text_direction is rtl

Defines the alignment of text in the object being rendered.

text_direction

Values: rtl | ltr

Initial value: rtl

Defines the natural direction of horizontal content.

208 Chapter 2. Community

Toga Documentation, Release 0.4.2

font_family

Values: system | serif | sans-serif | cursive | fantasy | monospace | <string>

Initial value: system

The font family to be used.

A value of system indicates that whatever is a system-appropriate font should be used.

A value of serif, sans-serif, cursive, fantasy, or monospace will use a system-defined font that matches the
description (e.g. “Times New Roman” for serif, “Courier New” for monospace).

Any other value will be checked against the family names previously registered with Font.register. If the name
cannot be resolved, the system font will be used.

font_style

Values: normal | italic | oblique

Initial value: normal

The style of the font to be used.

Note: Windows and Android do not support the oblique font style. A request for an oblique font will be interpreted
as italic.

font_variant

Values: normal | small_caps

Initial value: normal

The variant of the font to be used.

Note: Windows and Android do not support the small caps variant. A request for a small_caps font will be interpreted
as normal.

font_weight

Values: normal | bold

Initial value: normal

The weight of the font to be used.

font_size

Values: <integer>

Initial value: System default

The size of the font to be used, in CSS points.

2.3. Reference 209

Toga Documentation, Release 0.4.2

The relationship between Pack and CSS

Pack aims to be a functional subset of CSS. Any Pack layout can be converted into an equivalent CSS layout. After
applying this conversion, the CSS layout should be considered a “reference implementation”. Any disagreement be-
tween the rendering of a converted Pack layout in a browser, and the layout produced by the Toga implementation of
Pack should be considered to be either a bug in Toga, or a bug in the mapping.

The mapping that can be used to establish the reference implementation is:

• The reference HTML layout document is rendered in no-quirks mode, with a default CSS stylesheet:

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8" />
<title>Pack layout testbed</title>
<style>
html, body {
height: 100%;

}
body {
overflow: hidden;
display: flex;
margin: 0;
white-space: pre;

}
div {
display: flex;
white-space: pre;

}
</style>

</head>
<body></body>

</html>

• The root element of the Pack layout can be mapped to the <body> element of the HTML reference document.
The rendering area of the browser window becomes the view area that Pack will fill.

• ImageViews map to elements. The element has an additional style of object-fit: contain
unless both height and width are defined.

• All other elements in the DOM tree are mapped to <div> elements.

• The following Pack declarations can be mapped to equivalent CSS declarations:

210 Chapter 2. Community

https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

Toga Documentation, Release 0.4.2

Pack property CSS property
alignment:
top

align-items: start if direction == row; otherwise ignored.

alignment:
bottom

align-items: end if direction == row; otherwise ignored.

alignment:
left

align-items: start if direction == column; otherwise ignored.

alignment:
right

align-items: end if direction == column; otherwise ignored.

alignment:
center

align-items: center

direction:
<str>

flex-direction: <str>

display:
pack

display: flex

flex: <int> If direction = row and width is set, or direction = column and
height is set, ignore. Otherwise, flex: <int> 0 auto.

font_size:
<int>

font-size: <int>pt

height:
<value>

height: <value>px if value is an integer; height: auto if value is
none.

padding_top:
<int>

margin-top: <int>px

padding_bottom:
<int>

margin-bottom: <int>px

padding_left:
<int>

margin-left: <int>px

padding_right:
<int>

margin-right: <int>px

text_direction:
<str>

direction: <str>

width:
<value>

width: <value>px if value is an integer; width: auto if value is none.

• All other Pack declarations should be used as-is as CSS declarations, with underscores being converted to dashes
(e.g., background_color becomes background-color).

2.4 Background

2.4.1 About the project

Why Toga?

Toga isn’t the world’s first widget toolkit - there are dozens of other options. So why build a new one?

2.4. Background 211

Toga Documentation, Release 0.4.2

Native widgets - not themes

Toga uses native system widgets, not themes. When you see a Toga app running, it doesn’t just look like a native app -
it is a native app. Applying an operating system-inspired theme over the top of a generic widget set is an easy way for
a developer to achieve a cross-platform goal, but it leaves the end user with the mess.

It’s easy to spot apps that have been built using themed widget sets - they’re the ones that don’t behave quite like any
other app. Widgets don’t look quite right, or there’s a menu bar on a window in a macOS app. Themes can get quite
close - but there are always tell-tale signs.

On top of that, native widgets are always faster than a themed generic widget. After all, you’re using native system
capability that has been tuned and optimized, not a drawing engine that’s been layered on top of a generic widget.

Abstract the broad concepts

It’s not enough to just look like a native app, though - you need to feel like a native app as well.

A “Quit” option under a “File” menu makes sense if you’re writing a Windows app - but it’s completely out of place if
you’re on macOS - the Quit option should be under the application menu.

And besides - why did the developer have to code the location of a Quit option anyway? Every app in the world has to
have a quit option, so why doesn’t the widget toolkit provide a quit option pre-installed, out of the box?

Although Toga uses 100% native system widgets, that doesn’t mean Toga is just a wrapper around system widgets.
Wherever possible, Toga attempts to abstract the broader concepts underpinning the construction of GUI apps, and
build an API for that. So - every Toga app has the basic set of menu options you’d expect of every app - Quit, About,
and so on - all in the places you’d expect to see them in a native app.

When it comes to widgets, sometimes the abstraction is simple - after all, a button is a button, no matter what platform
you’re on. But other widgets may not be exposed so literally. What the Toga API aims to expose is a set of mechanisms
for achieving UI goals, not a literal widget set.

Python native

Most widget toolkits start their life as a C or C++ layer, which is then wrapped by other languages. As a result, you end
up with APIs that taste like C or C++.

Toga has been designed from the ground up to be a Python native widget toolkit. This means the API is able to exploit
language level features like generators and context managers in a way that a wrapper around a C library wouldn’t be
able to (at least, not easily).

This also means supporting Python 3, and 3 only because that’s where the future of Python is at.

pip install and nothing more

Toga aims to be no more than a pip install away from use. It doesn’t require the compilation of C extensions. There’s
no need to install a binary support library. There’s no need to change system paths and environment variables. Just
install it, import it, and start writing (or running) code.

212 Chapter 2. Community

Toga Documentation, Release 0.4.2

Embrace mobile

10 years ago, being a cross-platform widget toolkit meant being available for Windows, macOS and Linux. These days,
mobile computing is much more important. But despite this, there aren’t many good options for Python programming
on mobile platforms, and cross-platform mobile coding is still elusive. Toga aims to correct this.

Why “Toga”? Why the Yak?

So. . . why the name Toga?

We all know the aphorism that “When in Rome, do as the Romans do.”

So - what does a well dressed Roman wear? A toga, of course! And what does a well dressed Python app wear? Toga!

So. . . why the yak mascot?

It’s a reflection of the long running joke about yak shaving in computer programming. The story originally comes from
MIT, and is related to a Ren and Stimpy episode; over the years, the story has evolved, and now goes something like
this:

You want to borrow your neighbor’s hose so you can wash your car. But you remember that last week, you
broke their rake, so you need to go to the hardware store to buy a new one. But that means driving to the
hardware store, so you have to look for your keys. You eventually find your keys inside a tear in a cushion
- but you can’t leave the cushion torn, because the dog will destroy the cushion if they find a little tear. The
cushion needs a little more stuffing before it can be repaired, but it’s a special cushion filled with exotic
Tibetan yak hair.

The next thing you know, you’re standing on a hillside in Tibet shaving a yak. And all you wanted to do
was wash your car.

An easy to use widget toolkit is the yak standing in the way of progress of a number of BeeWare projects, and the
original creator of Toga has been tinkering with various widget toolkits for over 20 years, so the metaphor seemed
appropriate.

Success Stories

Want to see examples of Toga in use? Here’s some:

• Travel Tips is an app in the iOS App Store that uses Toga to describe it’s user interface.

• Eddington is a data fitting tool based on Toga and Briefcase

• taRpnCalcTG is a Toga based calculator for Android, Windows and MacOS which is extensible with Python
scripts.

• pyPlayground is a Toga based app for Android and Windows which can be modified to try Toga without additional
tool chain.

• taAppLister is a Toga based Android app for listing and exporting all installed apps.

• RemoteCommand is a Toga based app for synchronizing the clipboard between Windows and MacOS.

2.4. Background 213

https://en.wiktionary.org/wiki/when_in_Rome_do_as_the_Romans_do
https://en.wiktionary.org/wiki/yak_shaving
https://beeware.org/
https://apps.apple.com/au/app/travel-tips/id1336372310
https://github.com/EddLabs/eddington-gui
https://www.tanapro.ch/joomla3/index.php/downloads
https://www.tanapro.ch/joomla3/index.php/downloads
https://play.google.com/store/apps/details?id=ch.tanapro.taapplister
https://www.tanapro.ch/joomla3/index.php/downloads

Toga Documentation, Release 0.4.2

Release History

0.4.2 (2024-02-06)

Features

• Buttons can now be created with an icon, instead of a text label. (#774)

• Widgets and Windows can now be sorted. The ID of the widget is used for the sorting order. (#2190)

• The main window generated by the default startup() method of an app now has an ID of main. (#2190)

• A cross-platform API for camera access was added. (#2266, #2353)

• An OptionContainer widget was added for Android. (#2346)

Bugfixes

• New widgets with an ID matching an ID that was previously used no longer cause an error. (#2190)

• App.current_window on GTK now returns None when all windows are hidden. (#2211)

• Selection widgets on macOS can now include duplicated titles. (#2319)

• The padding around DetailedList on Android has been reduced. (#2338)

• The error returned when an Image is created with no source has been clarified. (#2347)

• On macOS, toga.Image objects can now be created from raw data that didn’t originate from a file. (#2355)

• Winforms no longer generates a system beep when pressing Enter in a TextInput. (#2374)

Backward Incompatible Changes

• Widgets must now be added to a window to be available in the widget registry for lookup by ID. (#2190)

• If the label for a Selection contains newlines, only the text up to the first newline will be displayed. (#2319)

• The internal Android method intent_result has been deprecated. This was an internal API, and not formally
documented, but it was the easiest mechanism for invoking Intents on the Android backend. It has been replaced
by the synchronous start_activity method that allows you to register a callback when the intent completes.
(#2353)

Documentation

• Initial documentation of backend-specific features has been added. (#1798)

• The difference between Icon and Image was clarified, and a note about the lack of an on_press handler on
ImageView was added. (#2348)

214 Chapter 2. Community

https://github.com/beeware/toga/issues/774
https://github.com/beeware/toga/issues/2190
https://github.com/beeware/toga/issues/2190
https://github.com/beeware/toga/issues/2266
https://github.com/beeware/toga/issues/2353
https://github.com/beeware/toga/issues/2346
https://github.com/beeware/toga/issues/2190
https://github.com/beeware/toga/issues/2211
https://github.com/beeware/toga/issues/2319
https://github.com/beeware/toga/issues/2338
https://github.com/beeware/toga/issues/2347
https://github.com/beeware/toga/issues/2355
https://github.com/beeware/toga/issues/2374
https://github.com/beeware/toga/issues/2190
https://github.com/beeware/toga/issues/2319
https://github.com/beeware/toga/issues/2353
https://github.com/beeware/toga/issues/1798
https://github.com/beeware/toga/issues/2348

Toga Documentation, Release 0.4.2

Misc

• #2298, #2299, #2302, #2312, #2313, #2318, #2331, #2332, #2333, #2336, #2337, #2339, #2340, #2357, #2358,
#2359, #2363, #2367, #2368, #2369, #2370, #2371, #2375, #2376

0.4.1 (2023-12-21)

Features

• Toga images can now be created from (and converted to) PIL images. (#2142)

• A wider range of command shortcut keys are now supported on WinForms. (#2198)

• Most widgets with flexible sizes now default to a minimum size of 100 CSS pixels. An explicit size will still
override this value. (#2200)

• OptionContainer content can now be constructed using toga.OptionItem objects. (#2259)

• An OptionContainer widget was added for iOS. (#2259)

• Apps can now specify platform-specific icon resources by appending the platform name (e.g., -macOS or
-windows) to the icon filename. (#2260)

• Images can now be created from the native platform representation of an image, without needing to be trans-
formed to bytes. (#2263)

Bugfixes

• TableViews on macOS will no longer crash if a drag operation is initiated from inside the table. (#1156)

• Separators before and after command sub-groups are now included in menus. (#2193)

• The web backend no longer generates a duplicate title bar. (#2194)

• The web backend is now able to display the About dialog on first page load. (#2195)

• The testbed is now able to run on macOS when the user running the tests has the macOS display setting “Prefer
tabs when opening documents” set to “Always”. (#2208)

• Compliance with Apple’s HIG regarding the naming and shortcuts for the Close and Close All menu items was
improved. (#2214)

• Font handling on older versions of iOS has been corrected. (#2265)

• ImageViews with flex=1 will now shrink to fit if the image is larger than the available space. (#2275)

Backward Incompatible Changes

• The toga.Image constructor now takes a single argument (src); the path and data arguments are deprecated.
(#2142)

• The use of Caps Lock as a keyboard modifier for commands was removed. (#2198)

• Support for macOS release prior to Big Sur (11) has been dropped. (#2228)

• When inserting or appending a tab to an OptionContainer, the enabled argument must now be provided as a
keyword argument. The name of the first argument has been also been renamed (from text to text_or_item);
it should generally be passed as a positional, rather than keyword argument. (#2259)

2.4. Background 215

https://github.com/beeware/toga/issues/2298
https://github.com/beeware/toga/issues/2299
https://github.com/beeware/toga/issues/2302
https://github.com/beeware/toga/issues/2312
https://github.com/beeware/toga/issues/2313
https://github.com/beeware/toga/issues/2318
https://github.com/beeware/toga/issues/2331
https://github.com/beeware/toga/issues/2332
https://github.com/beeware/toga/issues/2333
https://github.com/beeware/toga/issues/2336
https://github.com/beeware/toga/issues/2337
https://github.com/beeware/toga/issues/2339
https://github.com/beeware/toga/issues/2340
https://github.com/beeware/toga/issues/2357
https://github.com/beeware/toga/issues/2358
https://github.com/beeware/toga/issues/2359
https://github.com/beeware/toga/issues/2363
https://github.com/beeware/toga/issues/2367
https://github.com/beeware/toga/issues/2368
https://github.com/beeware/toga/issues/2369
https://github.com/beeware/toga/issues/2370
https://github.com/beeware/toga/issues/2371
https://github.com/beeware/toga/issues/2375
https://github.com/beeware/toga/issues/2376
https://github.com/beeware/toga/issues/2142
https://github.com/beeware/toga/issues/2198
https://github.com/beeware/toga/issues/2200
https://github.com/beeware/toga/issues/2259
https://github.com/beeware/toga/issues/2259
https://github.com/beeware/toga/issues/2260
https://github.com/beeware/toga/issues/2263
https://github.com/beeware/toga/issues/1156
https://github.com/beeware/toga/issues/2193
https://github.com/beeware/toga/issues/2194
https://github.com/beeware/toga/issues/2195
https://github.com/beeware/toga/issues/2208
https://github.com/beeware/toga/issues/2214
https://github.com/beeware/toga/issues/2265
https://github.com/beeware/toga/issues/2275
https://github.com/beeware/toga/issues/2142
https://github.com/beeware/toga/issues/2198
https://github.com/beeware/toga/issues/2228
https://github.com/beeware/toga/issues/2259

Toga Documentation, Release 0.4.2

• The use of synchronous on_result callbacks on dialogs and Webview.evaluate_javascript() calls has
been deprecated. These methods should be used in their asynchronous form. (#2264)

Documentation

• Documentation for toga.Key was added. (#2199)

• Some limitations on App presentation imposed by Wayland have been documented. (#2255)

Misc

• #2201, #2204, #2215, #2216, #2219, #2222, #2224, #2226, #2230, #2235, #2240, #2246, #2249, #2256, #2257,
#2261, #2264, #2267, #2269, #2270, #2271, #2272, #2283, #2284, #2287, #2294

0.4.0 (2023-11-03)

Features

• The Toga API has been fully audited. All APIs now have 100% test coverage, complete API documentation
(including type annotations), and are internally consistent. (#1903, #1938, #1944, #1946, #1949, #1951, #1955,
#1956, #1964, #1969, #1984, #1996, #2011, #2017, #2025, #2029, #2044, #2058, #2075)

• Headings are no longer mandatory for Tree widgets. If headings are not provided, the widget will not display its
header bar. (#1767)

• Support for custom font loading was added to the GTK, Cocoa and iOS backends. (#1837)

• The testbed app has better diagnostic output when running in test mode. (#1847)

• A Textual backend was added to support terminal applications. (#1867)

• Support for determining the currently active window was added to Winforms. (#1872)

• Programmatically scrolling to top and bottom in MultilineTextInput is now possible on iOS. (#1876)

• A handler has been added for users confirming the contents of a TextInput by pressing Enter/Return. (#1880)

• An API for giving a window focus was added. (#1887)

• Widgets now have a .clear() method to remove all child widgets. (#1893)

• Winforms now supports hiding and re-showing the app cursor. (#1894)

• ProgressBar and Switch widgets were added to the Web backend. (#1901)

• Missing value handling was added to the Tree widget. (#1913)

• App paths now include a config path for storing configuration files. (#1964)

• A more informative error message is returned when a platform backend doesn’t support a widget. (#1992)

• The example apps were updated to support being run with briefcase run on all platforms. (#1995)

• Headings are no longer mandatory Table widgets. (#2011)

• Columns can now be added and removed from a Tree. (#2017)

• The default system notification sound can be played via App.beep(). (#2018)

• DetailedList can now respond to “primary” and “secondary” user actions. These may be implemented as left
and right swipe respectively, or using any other platform-appropriate mechanism. (#2025)

216 Chapter 2. Community

https://github.com/beeware/toga/issues/2264
https://github.com/beeware/toga/issues/2199
https://github.com/beeware/toga/issues/2255
https://github.com/beeware/toga/issues/2201
https://github.com/beeware/toga/issues/2204
https://github.com/beeware/toga/issues/2215
https://github.com/beeware/toga/issues/2216
https://github.com/beeware/toga/issues/2219
https://github.com/beeware/toga/issues/2222
https://github.com/beeware/toga/issues/2224
https://github.com/beeware/toga/issues/2226
https://github.com/beeware/toga/issues/2230
https://github.com/beeware/toga/issues/2235
https://github.com/beeware/toga/issues/2240
https://github.com/beeware/toga/issues/2246
https://github.com/beeware/toga/issues/2249
https://github.com/beeware/toga/issues/2256
https://github.com/beeware/toga/issues/2257
https://github.com/beeware/toga/issues/2261
https://github.com/beeware/toga/issues/2264
https://github.com/beeware/toga/issues/2267
https://github.com/beeware/toga/issues/2269
https://github.com/beeware/toga/issues/2270
https://github.com/beeware/toga/issues/2271
https://github.com/beeware/toga/issues/2272
https://github.com/beeware/toga/issues/2283
https://github.com/beeware/toga/issues/2284
https://github.com/beeware/toga/issues/2287
https://github.com/beeware/toga/issues/2294
https://github.com/beeware/toga/issues/1903
https://github.com/beeware/toga/issues/1938
https://github.com/beeware/toga/issues/1944
https://github.com/beeware/toga/issues/1946
https://github.com/beeware/toga/issues/1949
https://github.com/beeware/toga/issues/1951
https://github.com/beeware/toga/issues/1955
https://github.com/beeware/toga/issues/1956
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1969
https://github.com/beeware/toga/issues/1984
https://github.com/beeware/toga/issues/1996
https://github.com/beeware/toga/issues/2011
https://github.com/beeware/toga/issues/2017
https://github.com/beeware/toga/issues/2025
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2044
https://github.com/beeware/toga/issues/2058
https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/1767
https://github.com/beeware/toga/issues/1837
https://github.com/beeware/toga/issues/1847
https://github.com/beeware/toga/issues/1867
https://github.com/beeware/toga/issues/1872
https://github.com/beeware/toga/issues/1876
https://github.com/beeware/toga/issues/1880
https://github.com/beeware/toga/issues/1887
https://github.com/beeware/toga/issues/1893
https://github.com/beeware/toga/issues/1894
https://github.com/beeware/toga/issues/1901
https://github.com/beeware/toga/issues/1913
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1992
https://github.com/beeware/toga/issues/1995
https://github.com/beeware/toga/issues/2011
https://github.com/beeware/toga/issues/2017
https://github.com/beeware/toga/issues/2018
https://github.com/beeware/toga/issues/2025

Toga Documentation, Release 0.4.2

• A DetailedList can now provide a value to use when a row doesn’t provide the required data. (#2025)

• The accessors used to populate a DetailedList can now be customized. (#2025)

• Transformations can now be applied to any canvas context, not just the root context. (#2029)

• Canvas now provides more list-like methods for manipulating drawing objects in a context. (#2029)

• On Windows, the default font now follows the system theme. On most devices, this means it has changed from
Microsoft Sans Serif 8pt to Segoe UI 9pt. (#2029)

• Font sizes are now consistently interpreted as CSS points. On Android, iOS and macOS, this means any numeric
font sizes will appear 33% larger than before. The default font size on these platforms is unchanged. (#2029)

• MultilineTextInputs no longer show spelling suggestions when in read-only mode. (#2136)

• Applications now verify that a main window has been created as part of the startup() method. (#2047)

• An implementation of ActivityIndicator was added to the Web backend. (#2050)

• An implementation of Divider was added to the Web backend. (#2051)

• The ability to capture the contents of a window as an image has been added. (#2063)

• A PasswordInput widget was added to the Web backend. (#2089)

• The WebKit inspector is automatically enabled on all macOS WebViews, provided you’re using macOS 13.3
(Ventura) or iOS 16.4, or later. (#2109)

• Text input widgets on macOS now support undo and redo. (#2151)

• The Divider widget was implemented on Android. (#2181)

Bugfixes

• The WinForms event loop was decoupled from the main form, allowing background tasks to run without a main
window being present. (#750)

• Widgets are now removed from windows when the window is closed, preventing a memory leak on window
closure. (#1215)

• Android and iOS apps no longer crash if you invoke App.hide_cursor() or App.show_cursor(). (#1235)

• A Selection widget with no items now consistently returns a selected value of None on all platforms. (#1723)

• macOS widget methods that return strings are now guaranteed to return strings, rather than native Objective C
string objects. (#1779)

• WebViews on Windows no longer have a black background when they are resized. (#1855)

• The interpretation of MultilineTextInput.readonly was corrected iOS (#1866)

• A window without an on_close handler can now be closed using the window frame close button. (#1872)

• Android apps running on devices older than API level 29 (Android 10) no longer crash. (#1878)

• Missing value handling on Tables was fixed on Android and Linux. (#1879)

• The GTK backend is now able to correctly identify the currently active window. (#1892)

• Error handling associated with the creation of Intents on Android has been improved. (#1909)

• The DetailedList widget on GTK now provides an accurate size hint during layout. (#1920)

• Apps on Linux no longer segfault if an X Windows display cannot be identified. (#1921)

• The on_result handler is now used by Cocoa file dialogs. (#1947)

2.4. Background 217

https://github.com/beeware/toga/issues/2025
https://github.com/beeware/toga/issues/2025
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2136
https://github.com/beeware/toga/issues/2047
https://github.com/beeware/toga/issues/2050
https://github.com/beeware/toga/issues/2051
https://github.com/beeware/toga/issues/2063
https://github.com/beeware/toga/issues/2089
https://github.com/beeware/toga/issues/2109
https://github.com/beeware/toga/issues/2151
https://github.com/beeware/toga/issues/2181
https://github.com/beeware/toga/issues/750
https://github.com/beeware/toga/issues/1215
https://github.com/beeware/toga/issues/1235
https://github.com/beeware/toga/issues/1723
https://github.com/beeware/toga/issues/1779
https://github.com/beeware/toga/issues/1855
https://github.com/beeware/toga/issues/1866
https://github.com/beeware/toga/issues/1872
https://github.com/beeware/toga/issues/1878
https://github.com/beeware/toga/issues/1879
https://github.com/beeware/toga/issues/1892
https://github.com/beeware/toga/issues/1909
https://github.com/beeware/toga/issues/1920
https://github.com/beeware/toga/issues/1921
https://github.com/beeware/toga/issues/1947

Toga Documentation, Release 0.4.2

• Pack layout now honors an explicit width/height setting of 0. (#1958)

• The minimum window size is now correctly recomputed and enforced if window content changes. (#2020)

• The title of windows can now be modified on Winforms. (#2094)

• An error on Winforms when a window has no content has been resolved. (#2095)

• iOS container views are now set to automatically resize with their parent view (#2161)

Backward Incompatible Changes

• The weight, style and variant arguments for Font and Font.register are now keyword-only. (#1903)

• The clear() method for resetting the value of a MultilineTextInput, TextInput and PasswordInput has been
removed. This method was an ambiguous override of the clear() method on Widget that removed all child
nodes. To remove all content from a text input widget, use widget.value = "". (#1938)

• The ability to perform multiple substring matches in a Contains validator has been removed. (#1944)

• The TextInput.validate method has been removed. Validation now happens automatically whenever the
value or validators properties are changed. (#1944)

• The argument names used to construct validators have changed. Error message arguments now all end with
_message; compare_count has been renamed count; and min_value and max_value have been renamed
min_length and max_length, respectively. (#1944)

• The get_dom() method on WebView has been removed. This method wasn’t implemented on most platforms,
and wasn’t working on any of the platforms where it was implemented, as modern web view implementations
don’t provide a synchronous API for accessing web content in this way. (#1949)

• The evaluate_javascript() method on WebView has been modified to work in both synchronous and asyn-
chronous contexts. In a synchronous context you can invoke the method and use a functional on_result callback
to be notified when evaluation is complete. In an asynchronous context, you can await the result. (#1949)

• The on_key_down handler has been removed from WebView. If you need to catch user input, either use a handler
in the embedded JavaScript, or create a Command with a key shortcut. (#1949)

• The invoke_javascript() method has been removed. All usage of invoke_javascript() can be replaced
with evaluate_javascript(). (#1949)

• The usage of local file:// URLs has been explicitly prohibited. file:// URLs have not been reliable for
some time; their usage is now explicitly prohibited. (#1949)

• DatePicker has been renamed DateInput. (#1951)

• TimePicker has been renamed TimeInput. (#1951)

• The on_select handler on the Selection widget has been renamed on_change for consistency with other wid-
gets. (#1955)

• The _notify() method on data sources has been renamed notify(), reflecting its status as a public API.
(#1955)

• The prepend() method was removed from the ListSource and TreeSource APIs. Calls to prepend(...)
can be replaced with insert(0, ...). (#1955)

• The insert() and append()APIs on ListSource and TreeSource have been modified to provide an interface
that is closer to that list API. These methods previously accepted a variable list of positional and keyword
arguments; these arguments should be combined into a single tuple or dictionary. This matches the API provided
by __setitem__(). (#1955)

218 Chapter 2. Community

https://github.com/beeware/toga/issues/1958
https://github.com/beeware/toga/issues/2020
https://github.com/beeware/toga/issues/2094
https://github.com/beeware/toga/issues/2095
https://github.com/beeware/toga/issues/2161
https://github.com/beeware/toga/issues/1903
https://github.com/beeware/toga/issues/1938
https://github.com/beeware/toga/issues/1944
https://github.com/beeware/toga/issues/1944
https://github.com/beeware/toga/issues/1944
https://github.com/beeware/toga/issues/1949
https://github.com/beeware/toga/issues/1949
https://github.com/beeware/toga/issues/1949
https://github.com/beeware/toga/issues/1949
https://github.com/beeware/toga/issues/1949
https://github.com/beeware/toga/issues/1951
https://github.com/beeware/toga/issues/1951
https://github.com/beeware/toga/issues/1955
https://github.com/beeware/toga/issues/1955
https://github.com/beeware/toga/issues/1955
https://github.com/beeware/toga/issues/1955

Toga Documentation, Release 0.4.2

• Images and ImageViews no longer support loading images from URLs. If you need to display an image from
a URL, use a background task to obtain the image data asynchronously, then create the Image and/or set the
ImageView image property on the completion of the asynchronous load. (#1956)

• A row box contained inside a row box will now expand to the full height of its parent, rather than collapsing to
the maximum height of the inner box’s child content. (#1958)

• A column box contained inside a column box will now expand to the full width of its parent, rather than collapsing
to the maximum width of the inner box’s child content. (#1958)

• On Android, the user data folder is now a data sub-directory of the location returned by context.
getFilesDir(), rather than the bare context.getFilesDir() location. (#1964)

• GTK now returns ~/.local/state/appname/log as the log file location, rather than ~/.cache/appname/
log. (#1964)

• The location returned by toga.App.paths.app is now the folder that contains the Python source file that defines
the app class used by the app. If you are using a toga.App instance directly, this may alter the path that is returned.
(#1964)

• On Winforms, if an application doesn’t define an author, an author of Unknown is now used in application data
paths, rather than Toga. (#1964)

• Winforms now returns %USERPROFILE%/AppData/Local/<Author Name>/<App Name>/Data as the user
data file location, rather than %USERPROFILE%/AppData/Local/<Author Name>/<App Name>. (#1964)

• Support for SplitContainers with more than 2 panels of content has been removed. (#1984)

• Support for 3-tuple form of specifying SplitContainer items, used to prevent panels from resizing, has been
removed. (#1984)

• The ability to increment and decrement the current OptionContainer tab was removed. Instead of con-
tainer.current_tab += 1, use container.current_tab = container.current_tab.index + 1 (#1996)

• OptionContainer.add(), OptionContainer.remove() and OptionContainer.insert() have been re-
moved, due to being ambiguous with base widget methods of the same name. Use the OptionContainer.
content.append(), OptionContainer.content.remove() and OptionContainer.content.insert()
APIs instead. (#1996)

• The on_select handler for OptionContainer no longer receives the option argument providing the selected
tab. Use current_tab to obtain the currently selected tab. (#1996)

• TimePicker.min_time and TimePicker.max_time has been renamed TimeInput.min and TimeInput.
max, respectively. (#1999)

• DatePicker.min_date and DatePicker.max_date has been renamed DateInput.min and DateInput.
max, respectively. (#1999)

• NumberInput.min_value and NumberInput.max_value have been renamed NumberInput.min and
NumberInput.max, respectively. (#1999)

• Slider.range has been replaced by Slider.min and Slider.max. (#1999)

• Tables now use an empty string for the default missing value, rather than warning about missing values. (#2011)

• Table.add_column() has been deprecated in favor of Table.append_column() and Table.
insert_column() (#2011)

• Table.on_double_click has been renamed Table.on_activate. (#2011, #2017)

• Trees now use an empty string for the default missing value, rather than warning about missing values. (#2017)

• The parent argument has been removed from the insert and append calls on TreeSource. This improves con-
sistency between the API for TreeSource and the API for list. To insert or append a row in to a descendant of a

2.4. Background 219

https://github.com/beeware/toga/issues/1956
https://github.com/beeware/toga/issues/1958
https://github.com/beeware/toga/issues/1958
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1964
https://github.com/beeware/toga/issues/1984
https://github.com/beeware/toga/issues/1984
https://github.com/beeware/toga/issues/1996
https://github.com/beeware/toga/issues/1996
https://github.com/beeware/toga/issues/1996
https://github.com/beeware/toga/issues/1999
https://github.com/beeware/toga/issues/1999
https://github.com/beeware/toga/issues/1999
https://github.com/beeware/toga/issues/1999
https://github.com/beeware/toga/issues/2011
https://github.com/beeware/toga/issues/2011
https://github.com/beeware/toga/issues/2011
https://github.com/beeware/toga/issues/2017
https://github.com/beeware/toga/issues/2017

Toga Documentation, Release 0.4.2

TreeSource root, use insert and append on the parent node itself - i.e., source.insert(parent, index, .
..) becomes parent.insert(index, ...), and source.insert(None, index, ...) becomes source.
insert(index, ...). (#2017)

• When constructing a DetailedList from a list of tuples, or a list of lists, the required order of values has changed
from (icon, title, subtitle) to (title, subtitle, icon). (#2025)

• The on_select handler for DetailedList no longer receives the selected row as an argument. (#2025)

• The handling of row deletion in DetailedList widgets has been significantly altered. The on_delete event
handler has been renamed on_primary_action, and is now only a notification that a “swipe left” event (or
platform equivalent) has been confirmed. This was previously inconsistent across platforms. Some platforms
would update the data source to remove the row; some treated on_delete as a notification event and expected
the application to handle the deletion. It is now the application’s responsibility to perform the data deletion.
(#2025)

• Support for Python 3.7 was removed. (#2027)

• fill() and stroke() now return simple drawing operations, rather than context managers. If you attempt to
use fill() or stroke() on a context as a context manager, an exception will be raised; using these methods
on Canvas will raise a warning, but return the appropriate context manager. (#2029)

• The clicks argument to Canvas.on_press has been removed. Instead, to detect “double clicks”, you
should use Canvas.on_activate. The clicks argument has also been removed from Canvas.on_release,
Canvas.on_drag, Canvas.on_alt_press, Canvas.on_alt_release, and Canvas.on_alt_drag. (#2029)

• The new_path operation has been renamed begin_path for consistency with the HTML5 Canvas API. (#2029)

• Methods that generate new contexts have been renamed: context(), closed_path(), fill() and stroke()
have become Context(), ClosedPath(), Fill() and Stroke() respectively. This has been done to make it
easier to differentiate between primitive drawing operations and context-generating operations. (#2029)

• A Canvas is no longer implicitly a context object. The Canvas.context property now returns the root context
of the canvas. If you were previously using Canvas.context() to generate an empty context, it should be
replaced with Canvas.Context(). Any operations to remove() drawing objects from the canvas or clear()
the canvas of drawing objects should be made on Canvas.context. Invoking these methods on Canvas will
now call the base Widget implementations, which will throw an exception because Canvas widgets cannot have
children. (#2029)

• The preserve option on Fill() operations has been deprecated. It was required for an internal optimization
and can be safely removed without impact. (#2029)

• Drawing operations (e.g., arc, line_to, etc) can no longer be invoked directly on a Canvas. Instead, they should
be invoked on the root context of the canvas, retrieved with via the canvas property. Context creating operations
(Fill, Stroke and ClosedPath) are not affected. (#2029)

• The tight argument to Canvas.measure_text() has been deprecated. It was a GTK implementation detail,
and can be safely removed without impact. (#2029)

• The multiselect argument to Open File and Select Folder dialogs has been renamed multiple_select, for
consistency with other widgets that have multiple selection capability. (#2058)

• Window.resizeable and Window.closeable have been renamed Window.resizable and Window.
closable, to adhere to US spelling conventions. (#2058)

• Windows no longer need to be explicitly added to the app’s window list. When a window is created, it will be
automatically added to the windows for the currently running app. (#2058)

• The optional arguments of Command and Group are now keyword-only. (#2075)

• In App, the properties id and name have been deprecated in favor of app_id and formal_name respectively,
and the property module_name has been removed. (#2075)

220 Chapter 2. Community

https://github.com/beeware/toga/issues/2017
https://github.com/beeware/toga/issues/2025
https://github.com/beeware/toga/issues/2025
https://github.com/beeware/toga/issues/2025
https://github.com/beeware/toga/issues/2027
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2029
https://github.com/beeware/toga/issues/2058
https://github.com/beeware/toga/issues/2058
https://github.com/beeware/toga/issues/2058
https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/2075

Toga Documentation, Release 0.4.2

• GROUP_BREAK, SECTION_BREAK and CommandSetwere removed from the toga namespace. End users generally
shouldn’t need to use these classes. If your code does need them for some reason, you can access them from the
toga.command namespace. (#2075)

• The windows constructor argument of toga.App has been removed. Windows are now automatically added to
the current app. (#2075)

• The filename argument and property of toga.Document has been renamed path, and is now guaranteed to
be a pathlib.Path object. (#2075)

• Documents must now provide a create() method to instantiate a main_window instance. (#2075)

• App.exit() now unconditionally exits the app, rather than confirming that the on_exit handler will permit the
exit. (#2075)

Documentation

• Documentation for application paths was added. (#1849)

• The contribution guide was expanded to include more suggestions for potential projects, and to explain how the
backend tests work. (#1868)

• All code blocks were updated to add a button to copy the relevant contents on to the user’s clipboard. (#1897)

• Class references were updated to reflect their preferred import location, rather than location where they are
defined in code. (#2001)

• The Linux system dependencies were updated to reflect current requirements for developing and using Toga.
(#2021)

Misc

• #1865, #1875, #1881, #1882, #1886, #1889, #1895, #1900, #1902, #1906, #1916, #1917, #1918, #1926, #1933,
#1948, #1950, #1952, #1954, #1963, #1972, #1977, #1980, #1988, #1989, #1998, #2008, #2014, #2019, #2022,
#2028, #2034, #2035, #2039, #2052, #2053, #2055, #2056, #2057, #2059, #2067, #2068, #2069, #2085, #2090,
#2092, #2093, #2101, #2102, #2113, #2114, #2115, #2116, #2118, #2119, #2123, #2124, #2127, #2128, #2131,
#2132, #2146, #2147, #2148, #2149, #2150, #2163, #2165, #2166, #2171, #2177, #2180, #2184, #2186

0.3.1 (2023-04-12)

Features

• The Button widget now has 100% test coverage, and complete API documentation. (#1761)

• The mapping between Pack layout and HTML/CSS has been formalized. (#1778)

• The Label widget now has 100% test coverage, and complete API documentation. (#1799)

• TextInput now supports focus handlers and changing alignment on GTK. (#1817)

• The ActivityIndicator widget now has 100% test coverage, and complete API documentation. (#1819)

• The Box widget now has 100% test coverage, and complete API documentation. (#1820)

• NumberInput now supports changing alignment on GTK. (#1821)

• The Divider widget now has 100% test coverage, and complete API documentation. (#1823)

• The ProgressBar widget now has 100% test coverage, and complete API documentation. (#1825)

2.4. Background 221

https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/2075
https://github.com/beeware/toga/issues/1849
https://github.com/beeware/toga/issues/1868
https://github.com/beeware/toga/issues/1897
https://github.com/beeware/toga/issues/2001
https://github.com/beeware/toga/issues/2021
https://github.com/beeware/toga/issues/1865
https://github.com/beeware/toga/issues/1875
https://github.com/beeware/toga/issues/1881
https://github.com/beeware/toga/issues/1882
https://github.com/beeware/toga/issues/1886
https://github.com/beeware/toga/issues/1889
https://github.com/beeware/toga/issues/1895
https://github.com/beeware/toga/issues/1900
https://github.com/beeware/toga/issues/1902
https://github.com/beeware/toga/issues/1906
https://github.com/beeware/toga/issues/1916
https://github.com/beeware/toga/issues/1917
https://github.com/beeware/toga/issues/1918
https://github.com/beeware/toga/issues/1926
https://github.com/beeware/toga/issues/1933
https://github.com/beeware/toga/issues/1948
https://github.com/beeware/toga/issues/1950
https://github.com/beeware/toga/issues/1952
https://github.com/beeware/toga/issues/1954
https://github.com/beeware/toga/issues/1963
https://github.com/beeware/toga/issues/1972
https://github.com/beeware/toga/issues/1977
https://github.com/beeware/toga/issues/1980
https://github.com/beeware/toga/issues/1988
https://github.com/beeware/toga/issues/1989
https://github.com/beeware/toga/issues/1998
https://github.com/beeware/toga/issues/2008
https://github.com/beeware/toga/issues/2014
https://github.com/beeware/toga/issues/2019
https://github.com/beeware/toga/issues/2022
https://github.com/beeware/toga/issues/2028
https://github.com/beeware/toga/issues/2034
https://github.com/beeware/toga/issues/2035
https://github.com/beeware/toga/issues/2039
https://github.com/beeware/toga/issues/2052
https://github.com/beeware/toga/issues/2053
https://github.com/beeware/toga/issues/2055
https://github.com/beeware/toga/issues/2056
https://github.com/beeware/toga/issues/2057
https://github.com/beeware/toga/issues/2059
https://github.com/beeware/toga/issues/2067
https://github.com/beeware/toga/issues/2068
https://github.com/beeware/toga/issues/2069
https://github.com/beeware/toga/issues/2085
https://github.com/beeware/toga/issues/2090
https://github.com/beeware/toga/issues/2092
https://github.com/beeware/toga/issues/2093
https://github.com/beeware/toga/issues/2101
https://github.com/beeware/toga/issues/2102
https://github.com/beeware/toga/issues/2113
https://github.com/beeware/toga/issues/2114
https://github.com/beeware/toga/issues/2115
https://github.com/beeware/toga/issues/2116
https://github.com/beeware/toga/issues/2118
https://github.com/beeware/toga/issues/2119
https://github.com/beeware/toga/issues/2123
https://github.com/beeware/toga/issues/2124
https://github.com/beeware/toga/issues/2127
https://github.com/beeware/toga/issues/2128
https://github.com/beeware/toga/issues/2131
https://github.com/beeware/toga/issues/2132
https://github.com/beeware/toga/issues/2146
https://github.com/beeware/toga/issues/2147
https://github.com/beeware/toga/issues/2148
https://github.com/beeware/toga/issues/2149
https://github.com/beeware/toga/issues/2150
https://github.com/beeware/toga/issues/2163
https://github.com/beeware/toga/issues/2165
https://github.com/beeware/toga/issues/2166
https://github.com/beeware/toga/issues/2171
https://github.com/beeware/toga/issues/2177
https://github.com/beeware/toga/issues/2180
https://github.com/beeware/toga/issues/2184
https://github.com/beeware/toga/issues/2186
https://github.com/beeware/toga/pull/1761
https://github.com/beeware/toga/pull/1778
https://github.com/beeware/toga/pull/1799
https://github.com/beeware/toga/pull/1817
https://github.com/beeware/toga/pull/1819
https://github.com/beeware/toga/pull/1820
https://github.com/beeware/toga/pull/1821
https://github.com/beeware/toga/pull/1823
https://github.com/beeware/toga/pull/1825

Toga Documentation, Release 0.4.2

• The Switch widget now has 100% test coverage, and complete API documentation. (#1832)

• Event handlers have been internally modified to simplify their definition and use on backends. (#1833)

• The base Toga Widget now has 100% test coverage, and complete API documentation. (#1834)

• Support for FreeBSD was added. (#1836)

• The Web backend now uses Shoelace to provide web components. (#1838)

• Winforms apps can now go full screen. (#1863)

Bugfixes

• Issues with reducing the size of windows on GTK have been resolved. (#1205)

• iOS now supports newlines in Labels. (#1501)

• The Slider widget now has 100% test coverage, and complete API documentation. (#1708)

• The GTK backend no longer raises a warning about the use of a deprecated set_wmclass API. (#1718)

• MultilineTextInput now correctly adapts to Dark Mode on macOS. (#1783)

• The handling of GTK layouts has been modified to reduce the frequency and increase the accuracy of layout
results. (#1794)

• The text alignment of MultilineTextInput on Android has been fixed to be TOP aligned. (#1808)

• GTK widgets that involve animation (such as Switch or ProgressBar) are now redrawn correctly. (#1826)

Improved Documentation

• API support tables now distinguish partial vs full support on each platform. (#1762)

• Some missing settings and constant values were added to the documentation of Pack. (#1786)

• Added documentation for toga.App.widgets. (#1852)

Misc

• #1750, #1764, #1765, #1766, #1770, #1771, #1777, #1797, #1802, #1813, #1818, #1822, #1829, #1830, #1835,
#1839, #1854, #1861

0.3.0 (2023-01-30)

Features

• Widgets now use a three-layered (Interface/Implementation/Native) structure.

• A GUI testing framework was added.

• A simplified “Pack” layout algorithm was added.

• Added a web backend.

222 Chapter 2. Community

https://github.com/beeware/toga/pull/1832
https://github.com/beeware/toga/pull/1833
https://github.com/beeware/toga/pull/1834
https://github.com/beeware/toga/pull/1836
https://github.com/beeware/toga/pull/1838
https://github.com/beeware/toga/pull/1863
https://github.com/beeware/toga/issues/1205
https://github.com/beeware/toga/issues/1501
https://github.com/beeware/toga/pull/1708
https://github.com/beeware/toga/issues/1718
https://github.com/beeware/toga/issues/1783
https://github.com/beeware/toga/pull/1794
https://github.com/beeware/toga/pull/1808
https://github.com/beeware/toga/issues/1826
https://github.com/beeware/toga/pull/1762
https://github.com/beeware/toga/pull/1786
https://github.com/beeware/toga/pull/1852
https://github.com/beeware/toga/issues/1750
https://github.com/beeware/toga/pull/1764
https://github.com/beeware/toga/pull/1765
https://github.com/beeware/toga/pull/1766
https://github.com/beeware/toga/pull/1770
https://github.com/beeware/toga/pull/1771
https://github.com/beeware/toga/pull/1777
https://github.com/beeware/toga/pull/1797
https://github.com/beeware/toga/pull/1802
https://github.com/beeware/toga/pull/1813
https://github.com/beeware/toga/pull/1818
https://github.com/beeware/toga/pull/1822
https://github.com/beeware/toga/pull/1829
https://github.com/beeware/toga/pull/1830
https://github.com/beeware/toga/pull/1835
https://github.com/beeware/toga/pull/1839
https://github.com/beeware/toga/pull/1854
https://github.com/beeware/toga/pull/1861

Toga Documentation, Release 0.4.2

Bugfixes

• Too many to count!

0.2.15

• Added more widgets and cross-platform support, especially for GTK+ and Winforms

0.2.14

• Removed use of namedtuple

0.2.13

• Various fixes in preparation for PyCon AU demo

0.2.12

• Migrated to CSS-based layout, rather than Cassowary/constraint layout.

• Added Windows backend

• Added Django backend

• Added Android backend

0.2.0 - 0.2.11

Internal development releases.

0.1.2

• Further improvements to multiple-repository packaging strategy.

• Ensure Ctrl-C is honored by apps.

• Cocoa: Added runtime warnings when minimum OS X version is not met.

0.1.1

• Refactored code into multiple repositories, so that users of one backend don’t have to carry the overhead of other
installed platforms

• Corrected a range of bugs, mostly related to problems under Python 3.

2.4. Background 223

Toga Documentation, Release 0.4.2

0.1.0

Initial public release. Includes:

• A Cocoa (OS X) backend

• A GTK+ backend

• A proof-of-concept Win32 backend

• A proof-of-concept iOS backend

Road Map

Toga is a new project - we have lots of things that we’d like to do. If you’d like to contribute, you can provide a patch
for one of these features.

Widgets

The core of Toga is its widget set. Modern GUI apps have lots of native controls that need to be represented. The
following widgets have no representation at present, and need to be added.

There’s also the task of porting widgets available on one platform to another platform.

Input

Inputs are mechanisms for displaying and editing input provided by the user.

• ComboBox - A free entry text field that provides options (e.g., text with past choices)

– Cocoa: NSComboBox

– GTK: Gtk.ComboBox.new_with_model_and_entry

– iOS: ?

– Winforms: ComboBox

– Android: Spinner

• DateTimeInput - A widget for selecting a date and a time.

– Cocoa: NSDatePicker

– GTK: Gtk.Calendar + ?

– iOS: UIDatePicker

– Winforms: DateTimePicker

– Android: ?

• ColorInput - A widget for selecting a color

– Cocoa: NSColorWell

– GTK: Gtk.ColorButton or Gtk.ColorSelection

– iOS: ?

– Winforms: ?

224 Chapter 2. Community

Toga Documentation, Release 0.4.2

– Android: ?

• SearchInput - A variant of TextField that is decorated as a search box.

– Cocoa: NSSearchField

– GTK: Gtk.Entry

– iOS: UISearchBar?

– Winforms: ?

– Android: ?

Views

Views are mechanisms for displaying rich content, usually in a read-only manner.

• VideoView - Display a video

– Cocoa: AVPlayerView

– GTK: Custom integration with GStreamer

– iOS: MPMoviePlayerController

– Winforms: ?

– Android: ?

• PDFView - Display a PDF document

– Cocoa: PDFView

– GTK: ?

– iOS: Integration with QuickLook?

– Winforms: ?

– Android: ?

• MapView - Display a map

– Cocoa: MKMapView

– GTK: Probably a Webkit.WebView pointing at Google Maps/OpenStreetMap

– iOS: MKMapView

– Winforms: ?

– Android: ?

Container widgets

Containers are widgets that can contain other widgets.

• ButtonContainer - A layout for a group of radio/checkbox options

– Cocoa: NSMatrix, or NSView with pre-set constraints.

– GTK: Gtk.ListBox

– iOS: ?

2.4. Background 225

Toga Documentation, Release 0.4.2

– Winforms: ?

– Android: ?

• FormContainer - A layout for a “key/value” or “label/widget” form

– Cocoa: NSForm, or NSView with pre-set constraints.

– GTK:

– iOS:

– Winforms: ?

– Android: ?

• NavigationContainer - A container view that holds a navigable tree of sub-views

Essentially a view that has a “back” button to return to the previous view in a hierarchy. Example of
use: Top level navigation in the macOS System Preferences panel.

– Cocoa: No native control

– GTK: No native control; Gtk.HeaderBar in 3.10+

– iOS: UINavigationBar + NavigationController

– Winforms: ?

– Android: ?

Miscellaneous

One of the aims of Toga is to provide a rich, feature-driven approach to app development. This requires the development
of APIs to support rich features.

• Preferences - Support for saving app preferences, and visualizing them in a platform native way.

• Notification when updates are available

• Easy Licensing/registration of apps - Monetization is not a bad thing, and shouldn’t be mutually exclusive with
open source.

Platforms

Toga currently has good support for Cocoa on macOS, GTK on Linux, Winforms on Windows, iOS and Android. Proof-
of-concept support exists for single page web apps. Support for a more modern Windows API would be desirable.

2.4.2 Topic guides

Widget layout

One of the major tasks of a GUI framework is to determine where each widget will be displayed within the application
window. This determination must be made when a window is initially displayed, and every time the window changes
size (or, on mobile devices, changes orientation).

Layout in Toga is performed using style engine. Toga provides a built-in style engine called Pack; however, other
style engines can be used. Every widget keeps a style object, and it is this style object that is used to perform layout
operations.

226 Chapter 2. Community

Toga Documentation, Release 0.4.2

Each widget can also report an “intrinsic” size - this is the size of the widget, as reported by the underlying GUI library.
The intrinsic size is a width and height; each dimension can be fixed, or specified as a minimum. For example, a button
may have a fixed intrinsic height, but a minimum intrinsic width (indicating that there is a minimum size the button
can be, but it can stretch to assume any larger size). This intrinsic size is computed when the widget is first displayed;
if fundamental properties of the widget ever change (e.g., changing the text or font size on a button), the widget needs
to be rehinted, which re-calculates the intrinsic size, and invalidates any layout.

Widgets are constructed in a tree structure. The widget at the root of the tree is called the container widget. Every
widget keeps a reference to the container at the root of its widget tree.

When a window needs to perform a layout, the layout engine asks the style object for the container to lay out its contents
within the space that the container has available. This will calculate a size and position for all the widgets in the tree.

Every window has a container representing the total viewable area of the window. However, some widgets (those with
“Container” in their name) establish sub-containers. When a refresh is requested on a container, any sub-containers
will also be refreshed.

Length units

Toga uses CSS units in its public API. Their physical size depends on the device type:

• A CSS pixel is about 1/96 of an inch (0.26 mm) on a desktop screen, and about 1/160 of an inch (0.16 mm) on a
phone screen.

• A CSS point is 1.33 CSS pixels.

Toga only uses points to measure font sizes. All other lengths are expressed as pixels.

For a full explanation of CSS units, see this article.

Implementation notes

• On macOS and iOS, one CSS pixel equals one “point”, which is 1, 2 or 3 linear physical pixels, depending on
the device.

• On Windows, one CSS pixel equals one physical pixel at 100% scale, and is adjusted as necessary at higher scale
factors.

• On Android, one CSS pixel equals one dp.

Data Sources

Most widgets in a user interface will need to interact with data - either displaying it, or providing a way to manipulate
it.

Well designed GUI applications will maintain a strong separation between the storage and manipulation of data, and how
that data is displayed. This separation allows developers to radically change how data is visualized without changing
the underlying interface for interacting with this data.

Toga encourages this separation through the use of data sources. Instead of directly telling a widget to display a
particular value (or collection of values), you should define a data source, and then attach a widget to that source. The
data source is responsible for tracking the data that is in the source; the widget responds to those changes in the data,
providing an appropriate visualization.

2.4. Background 227

https://hacks.mozilla.org/2013/09/css-length-explained/
https://developer.apple.com/library/archive/documentation/GraphicsAnimation/Conceptual/HighResolutionOSX/Explained/Explained.html
https://support.microsoft.com/en-us/windows/view-display-settings-in-windows-37f0e05e-98a9-474c-317a-e85422daa8bb
https://developer.android.com/training/multiscreen/screendensities#TaskUseDP

Toga Documentation, Release 0.4.2

Built-in data sources

There are three built-in data source types in Toga:

• Value Sources: For managing a single value. A ValueSource has a single attribute, (by default, value), which
is what will be rendered for display purposes.

• List Sources: For managing a list of items, each of which has one or more values. List data sources support the
data manipulation methods you’d expect of a list, and return Row objects. The attributes of each Row object
are the values that should be displayed.

• Tree Sources: For managing a hierarchy of items, each of which has one or more values. Tree data sources also
behave like a list, except that each item returned is a Node. The attributes of the Node are the values that should
be displayed; a Node also has children, accessible using the list interface on the Node.

Although Toga provides these built-in data sources, in general, you shouldn’t use them directly. Toga’s data sources are
wrappers around Python’s primitive collection types - list, dict, and so on. While this is useful for quick demon-
strations, or to visualize simple data, more complex applications should define their own custom data sources.

Listeners

Data sources communicate using a Listener interface. When any significant event occurs to the data source, all
listeners will be notified. This includes:

• Adding a new item

• Removing an existing item

• Changing an attribute of an existing item

• Clearing an entire data source

If any attribute of a ValueSource, Row or Node is modified, the source will generate a change event.

When you create a widget like Selection or Table, and provide a data source for that widget, the widget is automatically
added as a listener on that source.

Although widgets are the obvious listeners for a data source, any object can register as a listener. For example, a second
data source might register as a listener to an initial source to implement a filtered source. When an item is added to the
first data source, the second data source will be notified, and can choose whether to include the new item in it’s own
data representation.

Custom data sources

A custom data source enables you to provide a data manipulation API that makes sense for your application. For
example, if you were writing an application to display files on a file system, you shouldn’t just build a dictionary of
files, and use that to construct a TreeSource. Instead, you should write your own FileSystemSource that reflects
the files on the file system. Your file system data source doesn’t need to expose insert() or remove() methods
- because the end user doesn’t need an interface to “insert” files into your file system. However, you might have a
create_empty_file() method that creates a new file in the file system and adds a representation to the data tree.

Custom data sources are also required to emit notifications whenever notable events occur. This allows the widgets
rendering the data source to respond to changes in data. If a data source doesn’t emit notifications, widgets may not
reflect changes in data. Toga provides a Source base class for custom data source implementations. This base class
implements the notification API.

228 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Toga Documentation, Release 0.4.2

2.4.3 Toga’s internals

Architecture

Although Toga presents a single interface to the end user, there are three internal layers that make up every widget.
They are:

• The Interface layer

• The Implementation layer

• The Native layer

Interface

The interface layer is the public, documented interface for each widget. Following Toga’s design philosophy, these
widgets reflect high-level design concepts, rather than specific common widgets. It forms the public API for creating
apps, windows, widgets, and so on.

The interface layer is responsible for validation of any API inputs, and storage of any persistent values retained by
a widget. That storage may be supplemented or replaced by storage on the underlying native widget (or widgets),
depending on the capabilities of that widget.

The interface layer is also responsible for storing style and layout-related attributes of the widget.

The interface layer is defined in the toga-core module.

Implementation

The implementation layer is the platform-specific representation of each widget. Each platform that Toga supports has
its own implementation layer, named after the widget toolkit that the implementation layer is wrapping – toga-cocoa
for macOS (Cocoa being the name of the underlying macOS widget toolkit); toga-gtk for Linux (using the GTK+
toolkit); and so on. The implementation provides a private, internal API that the interface layer can use to create the
widgets described by the interface layer.

The API exposed by the implementation layer is different to that exposed by the interface layer and is not intended for
end-user consumption. It is a utility API, servicing the requirements of the interface layer.

Every widget in the implementation layer corresponds to exactly one widget in the interface layer. However, the reverse
will not always be true. Some widgets defined by the interface layer are not available on all platforms.

An interface widget obtains its implementation when it is constructed, using the platform factory. Each platform
provides a factory implementation. When a Toga application starts, it guesses its platform based on the value of sys.
platform, and uses that factory to create implementation-layer widgets.

If you have an interface layer widget, the implementation widget can be obtained using the _impl attribute of that
widget.

2.4. Background 229

Toga Documentation, Release 0.4.2

Native

The lowest layer of Toga is the native layer. The native layer represents the widgets required by the widget toolkit of your
system. These are accessed using whatever bridging library or Python-native API is available on the implementation
platform. This layer is usually provided by system-level APIs, not by Toga itself.

Most implementation widgets will have a single native widget. However, when a platform doesn’t expose a single
widget that meets the requirements of the Toga interface specification, the implementation layer will use multiple
native widgets to provide the required functionality.

In this case, the implementation must provide a single “container” widget that represents the overall geometry of the
combined native widgets. This widget is called the “primary” native widget. When there’s only one native widget, the
native widget is the primary native widget.

If you have an implementation widget, the interface widget can be obtained using the interface attribute, and the
primary native widget using the native attribute.

If you have a native widget, the interface widget can be obtained using the interface attribute, and the implementation
widget using the impl attribute.

An example

Here’s how Toga’s three-layer API works on the Button widget.

• toga.Button is defined in core/src/toga/widgets/button.py. This defines the public interface for the
Button widget, describing (amongst other things) that there is an on_click event handler on a Button. It expects
that there will be an implementation, but doesn’t care which implementation is provided.

• toga-gtk.widgets.Button is defined in gtk/src/toga-gtk/widgets/button.py. This defines the But-
ton at the implementation layer. It describes how to create a button on GTK, and how to connect the GTK
clicked signal to the on_click Toga handler.

• Gtk.Button is the native GTK-Python widget API that implements buttons on GTK.

This three layered approach allows us to change the implementation of Button without changing the public API that
end-users rely upon. For example, we could switch out toga-gtk.widgets.Button with toga-cocoa.widgets.
Button to provide a macOS implementation of the Button without altering the API that end-users use to construct
buttons.

The layered approach is especially useful with more complex widgets. Every platform provides a Button widget,
but other widgets are more complex. For example, macOS doesn’t provide a native DetailedList view, so it must be
constructed out of a scroll view, a table view, and a collection of other pieces. The three layered architecture hides this
complexity - the API exposed to developers is a single (interface layer) widget; the complexity of the implementation
only matters to the maintainers of Toga.

Lastly, the layered approach provides a testing benefit. In addition to the Cocoa, GTK, and other platform imple-
mentations, there is a “dummy” implementation. This implementation satisfies all the API requirements of a Toga
implementation layer, but without actually performing any graphical operations. This dummy API can be used to test
code using the Toga interface layer.

230 Chapter 2. Community

PYTHON MODULE INDEX

t
toga.constants, 200
toga.validators, 119

231

Toga Documentation, Release 0.4.2

232 Python Module Index

INDEX

Symbols
__call__() (toga.app.AppStartupMethod method), 58
__call__() (toga.app.BackgroundTask method), 59
__call__() (toga.app.OnExitHandler method), 59
__call__() (toga.command.ActionHandler method),

102
__call__() (toga.widgets.button.OnPressHandler

method), 129
__call__() (toga.widgets.canvas.OnResizeHandler

method), 145
__call__() (toga.widgets.canvas.OnTouchHandler

method), 145
__call__() (toga.widgets.optioncontainer.OnSelectHandler

method), 85
__call__() (toga.window.DialogResultHandler

method), 72
__call__() (toga.window.OnCloseHandler method), 71
__delitem__() (toga.sources.ListSource method), 110
__delitem__() (toga.sources.Node method), 114
__delitem__() (toga.sources.TreeSource method), 116
__delitem__() (toga.widgets.optioncontainer.OptionList

method), 84
__getitem__() (toga.sources.ListSource method), 110
__getitem__() (toga.sources.Node method), 114
__getitem__() (toga.sources.TreeSource method), 116
__getitem__() (toga.widgets.canvas.Context method),

138
__getitem__() (toga.widgets.optioncontainer.OptionList

method), 84
__len__() (toga.sources.ListSource method), 110
__len__() (toga.sources.Node method), 114
__len__() (toga.sources.TreeSource method), 116
__len__() (toga.widgets.canvas.Context method), 138
__setattr__() (toga.sources.Row method), 109
__setitem__() (toga.sources.ListSource method), 110
__setitem__() (toga.sources.Node method), 114
__setitem__() (toga.sources.TreeSource method), 116

A
A (toga.Key attribute), 201
about() (toga.App method), 55
accessors (toga.DetailedList property), 152

accessors (toga.Table property), 180
accessors (toga.Tree property), 190
ActionHandler (protocol in toga.command), 102
ActivityIndicator (class in toga), 126
add() (toga.Widget method), 197
add_background_task() (toga.App method), 56
add_column() (toga.Table method), 180
add_listener() (toga.sources.Source method), 107
ALPHABETIC (toga.constants.Baseline attribute), 200
AMPERSAND (toga.Key attribute), 201
App (class in toga), 55
app (toga.Document property), 62
APP (toga.Group attribute), 101
app (toga.hardware.camera.Camera property), 94
app (toga.paths.Paths property), 96
app (toga.Widget property), 198
app (toga.Window property), 66
app_id (toga.App property), 56
app_name (toga.App property), 56
append() (toga.sources.ListSource method), 110
append() (toga.sources.Node method), 114
append() (toga.sources.TreeSource method), 116
append() (toga.widgets.canvas.Context method), 138
append() (toga.widgets.optioncontainer.OptionList

method), 84
append_column() (toga.Table method), 181
append_column() (toga.Tree method), 190
AppStartupMethod (protocol in toga.app), 58
arc() (toga.widgets.canvas.Context method), 138
as_format() (toga.Image method), 106
as_image() (toga.Canvas method), 135
as_image() (toga.ImageView method), 156
as_image() (toga.Window method), 66
ASTERISK (toga.Key attribute), 201
AT (toga.Key attribute), 201
author (toga.App property), 56
AUTO (toga.constants.FlashMode attribute), 200

B
B (toga.Key attribute), 201
BACK_QUOTE (toga.Key attribute), 201
BackgroundTask (protocol in toga.app), 58

233

Toga Documentation, Release 0.4.2

BACKSLASH (toga.Key attribute), 201
BACKSPACE (toga.Key attribute), 201
Baseline (class in toga.constants), 200
beep() (toga.App method), 56
begin_path() (toga.widgets.canvas.Context method),

139
bezier_curve_to() (toga.widgets.canvas.Context

method), 139
BooleanValidator (class in toga.validators), 119
BOTTOM (toga.constants.Baseline attribute), 200
Box (class in toga), 77
Button (class in toga), 129

C
C (toga.Key attribute), 201
cache (toga.paths.Paths property), 96
Camera (class in toga.hardware.camera), 94
camera (toga.App property), 56
CameraDevice (class in toga.hardware.camera), 95
can_close() (toga.Document method), 62
can_have_children (toga.Widget property), 198
can_have_children() (toga.sources.Node method),

114
Canvas (class in toga), 134
canvas (toga.widgets.canvas.Context property), 139
CAPSLOCK (toga.Key attribute), 201
CARET (toga.Key attribute), 201
change() (toga.sources.Listener method), 107
children (toga.Widget property), 198
clear() (toga.sources.Listener method), 107
clear() (toga.sources.ListSource method), 110
clear() (toga.sources.TreeSource method), 116
clear() (toga.Widget method), 198
clear() (toga.widgets.canvas.Context method), 139
closable (toga.Window property), 66
close() (toga.Window method), 66
CLOSE_BRACE (toga.Key attribute), 202
CLOSE_BRACKET (toga.Key attribute), 202
CLOSE_PARENTHESIS (toga.Key attribute), 202
close_path() (toga.widgets.canvas.Context method),

139
closeable (toga.Window property), 66
closed (toga.Window property), 66
closed_path() (toga.widgets.canvas.Context method),

139
ClosedPath() (toga.Canvas method), 134
ClosedPath() (toga.widgets.canvas.Context method),

137
ClosedPathContext (class in toga.widgets.canvas), 143
collapse() (toga.Tree method), 191
COLON (toga.Key attribute), 202
color (toga.widgets.canvas.FillContext property), 144
color (toga.widgets.canvas.StrokeContext property), 144
COMMA (toga.Key attribute), 202

Command (class in toga), 100
commands (toga.App property), 56
COMMANDS (toga.Group attribute), 101
config (toga.paths.Paths property), 96
confirm_dialog() (toga.Window method), 66
Contains (class in toga.validators), 119
ContainsDigit (class in toga.validators), 120
ContainsLowercase (class in toga.validators), 120
ContainsSpecial (class in toga.validators), 121
ContainsUppercase (class in toga.validators), 121
content (toga.OptionContainer property), 83
content (toga.OptionItem property), 83
content (toga.ScrollContainer property), 89
content (toga.SplitContainer property), 93
content (toga.Window property), 67
Context (class in toga.widgets.canvas), 137
context (toga.Canvas property), 135
Context() (toga.Canvas method), 135
Context() (toga.widgets.canvas.Context method), 137
context() (toga.widgets.canvas.Context method), 139
count() (toga.validators.Contains method), 119
count() (toga.validators.ContainsDigit method), 120
count() (toga.validators.ContainsLowercase method),

120
count() (toga.validators.ContainsSpecial method), 121
count() (toga.validators.ContainsUppercase method),

121
count() (toga.validators.CountValidator method), 122
CountValidator (class in toga.validators), 121
create() (toga.Document method), 62
current_tab (toga.OptionContainer property), 83
current_window (toga.App property), 56

D
D (toga.Key attribute), 202
data (toga.DetailedList property), 152
data (toga.Image property), 106
data (toga.paths.Paths property), 96
data (toga.Table property), 181
data (toga.Tree property), 191
DateInput (class in toga), 146
DEFAULT_ICON (toga.Icon attribute), 104
DELETE (toga.Key attribute), 202
description (toga.App property), 56
DetailedList (class in toga), 151
devices (toga.hardware.camera.Camera property), 94
DialogResultHandler (protocol in toga.window), 71
Direction (class in toga.constants), 200
direction (toga.Divider property), 154
direction (toga.SplitContainer property), 93
Divider (class in toga), 154
Document (class in toga), 62
document_type (toga.Document property), 62
document_types (toga.DocumentApp property), 61

234 Index

Toga Documentation, Release 0.4.2

DocumentApp (class in toga), 61
documents (toga.DocumentApp property), 61
DOLLAR (toga.Key attribute), 202
DOUBLE_QUOTE (toga.Key attribute), 202
DOWN (toga.Key attribute), 202
DrawingObject (class in toga.widgets.canvas), 143

E
E (toga.Key attribute), 202
EDIT (toga.Group attribute), 101
EJECT (toga.Key attribute), 202
ellipse() (toga.widgets.canvas.Context method), 139
Email (class in toga.validators), 122
EMAIL_REGEX (toga.validators.Email attribute), 122
enabled (toga.ActivityIndicator property), 127
enabled (toga.Box property), 77
enabled (toga.Canvas property), 136
enabled (toga.Command property), 100
enabled (toga.DetailedList property), 152
enabled (toga.Divider property), 154
enabled (toga.ImageView property), 157
enabled (toga.OptionContainer property), 83
enabled (toga.OptionItem property), 84
enabled (toga.ProgressBar property), 167
enabled (toga.ScrollContainer property), 89
enabled (toga.SplitContainer property), 93
enabled (toga.Table property), 181
enabled (toga.Tree property), 191
enabled (toga.Widget property), 198
END (toga.Key attribute), 202
EndsWith (class in toga.validators), 122
ENTER (toga.Key attribute), 202
EQUAL (toga.Key attribute), 202
error_dialog() (toga.Window method), 67
ESCAPE (toga.Key attribute), 202
evaluate_javascript() (toga.WebView method), 196
EVENODD (toga.constants.FillRule attribute), 200
EXCLAMATION (toga.Key attribute), 202
exit() (toga.App method), 56
exit_full_screen() (toga.App method), 56
expand() (toga.Tree method), 191

F
F (toga.Key attribute), 202
F1 (toga.Key attribute), 202
F10 (toga.Key attribute), 202
F11 (toga.Key attribute), 202
F12 (toga.Key attribute), 202
F13 (toga.Key attribute), 202
F14 (toga.Key attribute), 202
F15 (toga.Key attribute), 202
F16 (toga.Key attribute), 202
F17 (toga.Key attribute), 202
F18 (toga.Key attribute), 202

F19 (toga.Key attribute), 202
F2 (toga.Key attribute), 202
F3 (toga.Key attribute), 202
F4 (toga.Key attribute), 203
F5 (toga.Key attribute), 203
F6 (toga.Key attribute), 203
F7 (toga.Key attribute), 203
F8 (toga.Key attribute), 203
F9 (toga.Key attribute), 203
FILE (toga.Group attribute), 101
filename (toga.Document property), 62
Fill() (toga.Canvas method), 135
Fill() (toga.widgets.canvas.Context method), 137
fill() (toga.widgets.canvas.Context method), 140
FillContext (class in toga.widgets.canvas), 144
FillRule (class in toga.constants), 200
find() (toga.sources.ListSource method), 110
find() (toga.sources.Node method), 114
find() (toga.sources.TreeSource method), 116
FlashMode (class in toga.constants), 200
focus() (toga.ActivityIndicator method), 127
focus() (toga.Box method), 78
focus() (toga.Canvas method), 136
focus() (toga.DetailedList method), 152
focus() (toga.Divider method), 154
focus() (toga.ImageView method), 157
focus() (toga.Label method), 158
focus() (toga.OptionContainer method), 83
focus() (toga.ScrollContainer method), 89
focus() (toga.SplitContainer method), 93
focus() (toga.Table method), 181
focus() (toga.Tree method), 191
focus() (toga.Widget method), 198
Font (class in toga), 98
formal_name (toga.App property), 56
full_screen (toga.Window property), 67
FULL_STOP (toga.Key attribute), 203

G
G (toga.Key attribute), 203
GREATER_THAN (toga.Key attribute), 203
Group (class in toga), 100

H
H (toga.Key attribute), 203
handle_close() (toga.Document method), 62
has_flash (toga.hardware.camera.CameraDevice prop-

erty), 95
has_permission (toga.hardware.camera.Camera prop-

erty), 95
HASH (toga.Key attribute), 203
headings (toga.Table property), 181
headings (toga.Tree property), 191
height (toga.Image property), 106

Index 235

Toga Documentation, Release 0.4.2

HELP (toga.Group attribute), 101
hide() (toga.Window method), 67
hide_cursor() (toga.App method), 56
HOME (toga.Key attribute), 203
home_page (toga.App property), 57
HORIZONTAL (toga.constants.Direction attribute), 200
HORIZONTAL (toga.Divider attribute), 154
horizontal (toga.ScrollContainer property), 89
horizontal_position (toga.ScrollContainer prop-

erty), 89

I
I (toga.Key attribute), 203
Icon (class in toga), 103
icon (toga.App property), 57
icon (toga.Button property), 129
icon (toga.Command property), 100
icon (toga.OptionItem property), 84
IconContent (C type), 103
id (toga.App property), 57
id (toga.hardware.camera.CameraDevice property), 95
id (toga.Widget property), 198
id (toga.Window property), 67
Image (class in toga), 105
image (toga.ImageView property), 157
ImageContent (C type), 105
ImageView (class in toga), 156
index (toga.OptionItem property), 84
index() (toga.sources.ListSource method), 111
index() (toga.sources.Node method), 115
index() (toga.sources.TreeSource method), 117
index() (toga.widgets.optioncontainer.OptionList

method), 84
info_dialog() (toga.Window method), 67
insert() (toga.sources.Listener method), 107
insert() (toga.sources.ListSource method), 111
insert() (toga.sources.Node method), 115
insert() (toga.sources.TreeSource method), 117
insert() (toga.Widget method), 198
insert() (toga.widgets.canvas.Context method), 140
insert() (toga.widgets.optioncontainer.OptionList

method), 85
insert_column() (toga.Table method), 181
insert_column() (toga.Tree method), 191
Integer (class in toga.validators), 123
interface (toga.OptionItem property), 84
is_child_of() (toga.Group method), 101
is_determinate (toga.ProgressBar property), 167
is_full_screen (toga.App property), 57
is_parent_of() (toga.Group method), 101
is_printable() (toga.Key method), 205
is_running (toga.ActivityIndicator property), 127
is_running (toga.ProgressBar property), 167
is_valid (toga.TextInput property), 184

is_valid() (toga.validators.BooleanValidator method),
119

is_valid() (toga.validators.EndsWith method), 122
is_valid() (toga.validators.Integer method), 123
is_valid() (toga.validators.LengthBetween method),

123
is_valid() (toga.validators.MatchRegex method), 124
is_valid() (toga.validators.Number method), 125
is_valid() (toga.validators.StartsWith method), 125
items (toga.Selection property), 170

J
J (toga.Key attribute), 203

K
K (toga.Key attribute), 203
Key (class in toga), 201

L
L (toga.Key attribute), 203
Label (class in toga), 158
LEFT (toga.Key attribute), 203
LengthBetween (class in toga.validators), 123
LESS_THAN (toga.Key attribute), 203
line_to() (toga.widgets.canvas.Context method), 140
Listener (class in toga.sources), 107
listeners (toga.sources.Source property), 108
ListSource (class in toga.sources), 109
load_url() (toga.WebView method), 196
logs (toga.paths.Paths property), 96
loop (toga.App property), 57

M
M (toga.Key attribute), 203
main_loop() (toga.App method), 57
main_window (toga.App property), 57
main_window (toga.Document property), 62
MainWindow (class in toga), 74
MatchRegex (class in toga.validators), 123
max (toga.DateInput property), 146
max (toga.NumberInput property), 163
max (toga.ProgressBar property), 168
max (toga.Slider property), 173
max (toga.TimeInput property), 186
max_horizontal_position (toga.ScrollContainer

property), 89
max_value (toga.NumberInput property), 163
max_vertical_position (toga.ScrollContainer prop-

erty), 89
MaxLength (class in toga.validators), 124
measure_text() (toga.Canvas method), 136
MIDDLE (toga.constants.Baseline attribute), 200
min (toga.DateInput property), 146

236 Index

Toga Documentation, Release 0.4.2

min (toga.NumberInput property), 163
min (toga.Slider property), 173
min (toga.TimeInput property), 186
min_value (toga.NumberInput property), 163
minimizable (toga.Window property), 68
MinLength (class in toga.validators), 124
MINUS (toga.Key attribute), 203
missing_value (toga.DetailedList property), 152
missing_value (toga.Table property), 181
missing_value (toga.Tree property), 192
MOD_1 (toga.Key attribute), 203
MOD_2 (toga.Key attribute), 203
MOD_3 (toga.Key attribute), 203
module

toga.constants, 200
toga.validators, 119

move_to() (toga.widgets.canvas.Context method), 140
MultilineTextInput (class in toga), 160
multiple_select (toga.Table property), 181
multiple_select (toga.Tree property), 192

N
N (toga.Key attribute), 203
name (toga.App property), 57
name (toga.hardware.camera.CameraDevice property),

95
new_path() (toga.widgets.canvas.Context method), 141
Node (class in toga.sources), 114
NONZERO (toga.constants.FillRule attribute), 200
NotContains (class in toga.validators), 124
notify() (toga.sources.Source method), 108
Number (class in toga.validators), 124
NumberInput (class in toga), 162
NUMPAD_0 (toga.Key attribute), 203
NUMPAD_1 (toga.Key attribute), 203
NUMPAD_2 (toga.Key attribute), 203
NUMPAD_3 (toga.Key attribute), 203
NUMPAD_4 (toga.Key attribute), 203
NUMPAD_5 (toga.Key attribute), 203
NUMPAD_6 (toga.Key attribute), 203
NUMPAD_7 (toga.Key attribute), 204
NUMPAD_8 (toga.Key attribute), 204
NUMPAD_9 (toga.Key attribute), 204
NUMPAD_CLEAR (toga.Key attribute), 204
NUMPAD_DECIMAL_POINT (toga.Key attribute), 204
NUMPAD_DIVIDE (toga.Key attribute), 204
NUMPAD_ENTER (toga.Key attribute), 204
NUMPAD_EQUAL (toga.Key attribute), 204
NUMPAD_MINUS (toga.Key attribute), 204
NUMPAD_MULTIPLY (toga.Key attribute), 204
NUMPAD_PLUS (toga.Key attribute), 204

O
O (toga.Key attribute), 204

OFF (toga.constants.FlashMode attribute), 200
ON (toga.constants.FlashMode attribute), 200
on_activate (toga.Canvas property), 136
on_activate (toga.Table property), 181
on_activate (toga.Tree property), 192
on_alt_drag (toga.Canvas property), 136
on_alt_press (toga.Canvas property), 136
on_alt_release (toga.Canvas property), 136
on_change (toga.DateInput property), 147
on_change (toga.MultilineTextInput property), 161
on_change (toga.NumberInput property), 163
on_change (toga.Selection property), 171
on_change (toga.Slider property), 173
on_change (toga.Switch property), 176
on_change (toga.TextInput property), 184
on_change (toga.TimeInput property), 186
on_close (toga.MainWindow property), 74
on_close (toga.Window property), 68
on_confirm (toga.TextInput property), 184
on_delete (toga.DetailedList property), 152
on_double_click (toga.Table property), 181
on_double_click (toga.Tree property), 192
on_drag (toga.Canvas property), 136
on_exit (toga.App property), 57
on_gain_focus (toga.TextInput property), 184
on_lose_focus (toga.TextInput property), 184
on_press (toga.Button property), 129
on_press (toga.Canvas property), 136
on_press (toga.Slider property), 173
on_primary_action (toga.DetailedList property), 152
on_refresh (toga.DetailedList property), 152
on_release (toga.Canvas property), 136
on_release (toga.Slider property), 173
on_resize (toga.Canvas property), 136
on_scroll (toga.ScrollContainer property), 89
on_secondary_action (toga.DetailedList property),

152
on_select (toga.DetailedList property), 152
on_select (toga.OptionContainer property), 83
on_select (toga.Selection property), 171
on_select (toga.Table property), 182
on_select (toga.Tree property), 192
on_webview_load (toga.WebView property), 196
OnCloseHandler (protocol in toga.window), 71
OnExitHandler (protocol in toga.app), 59
OnPressHandler (protocol in toga.widgets.button), 129
OnResizeHandler (protocol in toga.widgets.canvas),

145
OnSelectHandler (protocol in

toga.widgets.optioncontainer), 85
OnTouchHandler (protocol in toga.widgets.canvas), 144
OPEN_BRACE (toga.Key attribute), 204
OPEN_BRACKET (toga.Key attribute), 204
open_file_dialog() (toga.Window method), 68

Index 237

Toga Documentation, Release 0.4.2

OPEN_PARENTHESIS (toga.Key attribute), 204
OPTION_CONTAINER_DEFAULT_TAB_ICON (toga.Icon at-

tribute), 104
OptionContainer (class in toga), 83
OptionContainerContent (C type), 83
OptionItem (class in toga), 83
OptionList (class in toga.widgets.optioncontainer), 84

P
P (toga.Key attribute), 204
PAGE_DOWN (toga.Key attribute), 204
PAGE_UP (toga.Key attribute), 204
parent (toga.Group property), 101
parent (toga.Widget property), 199
PasswordInput (class in toga), 165
path (toga.Document property), 62
path (toga.Image property), 106
Paths (class in toga.paths), 96
paths (toga.App property), 57
PERCENT (toga.Key attribute), 204
PIPE (toga.Key attribute), 204
placeholder (toga.MultilineTextInput property), 161
placeholder (toga.TextInput property), 184
PLUS (toga.Key attribute), 204
position (toga.ScrollContainer property), 89
position (toga.Window property), 69
ProgressBar (class in toga), 167

Q
Q (toga.Key attribute), 204
quadratic_curve_to() (toga.widgets.canvas.Context

method), 141
QUESTION (toga.Key attribute), 204
question_dialog() (toga.Window method), 69
QUOTE (toga.Key attribute), 204

R
R (toga.Key attribute), 204
range (toga.Slider property), 173
read() (toga.Document method), 62
readonly (toga.MultilineTextInput property), 161
readonly (toga.NumberInput property), 163
readonly (toga.TextInput property), 185
rect() (toga.widgets.canvas.Context method), 141
redraw() (toga.Canvas method), 137
redraw() (toga.widgets.canvas.Context method), 141
refresh() (toga.Widget method), 199
register() (toga.Font static method), 98
remove() (toga.sources.Listener method), 107
remove() (toga.sources.ListSource method), 111
remove() (toga.sources.Node method), 115
remove() (toga.sources.TreeSource method), 117
remove() (toga.Widget method), 199

remove() (toga.widgets.canvas.Context method), 141
remove() (toga.widgets.optioncontainer.OptionList

method), 85
remove_column() (toga.Table method), 182
remove_column() (toga.Tree method), 192
remove_listener() (toga.sources.Source method), 108
request_permission()

(toga.hardware.camera.Camera method),
95

reset_transform() (toga.widgets.canvas.Context
method), 141

resizable (toga.Window property), 69
resizeable (toga.Window property), 69
RIGHT (toga.Key attribute), 204
root (toga.Group property), 102
root (toga.Widget property), 199
rotate() (toga.widgets.canvas.Context method), 141
Row (class in toga.sources), 109

S
S (toga.Key attribute), 204
save() (toga.Image method), 106
save_file_dialog() (toga.Window method), 69
scale() (toga.widgets.canvas.Context method), 142
scroll_to_bottom() (toga.DetailedList method), 152
scroll_to_bottom() (toga.MultilineTextInput

method), 161
scroll_to_bottom() (toga.Table method), 182
scroll_to_row() (toga.DetailedList method), 153
scroll_to_row() (toga.Table method), 182
scroll_to_top() (toga.DetailedList method), 153
scroll_to_top() (toga.MultilineTextInput method),

161
scroll_to_top() (toga.Table method), 182
ScrollContainer (class in toga), 89
select_folder_dialog() (toga.Window method), 70
Selection (class in toga), 170
selection (toga.DetailedList property), 153
selection (toga.Table property), 182
selection (toga.Tree property), 192
SEMICOLON (toga.Key attribute), 204
set_content() (toga.WebView method), 197
set_full_screen() (toga.App method), 57
SHIFT (toga.Key attribute), 204
show() (toga.Document method), 62
show() (toga.Window method), 70
show_cursor() (toga.App method), 58
size (toga.Image property), 106
size (toga.Window property), 70
SLASH (toga.Key attribute), 204
Slider (class in toga), 172
Source (class in toga.sources), 107
SPACE (toga.Key attribute), 204
SplitContainer (class in toga), 93

238 Index

Toga Documentation, Release 0.4.2

stack_trace_dialog() (toga.Window method), 70
start() (toga.ActivityIndicator method), 127
start() (toga.ProgressBar method), 168
start_activity() (toga_android.App method), 39
StartsWith (class in toga.validators), 125
startup() (toga.App method), 58
startup() (toga.DocumentApp method), 61
step (toga.NumberInput property), 163
stop() (toga.ActivityIndicator method), 127
stop() (toga.ProgressBar method), 168
Stroke() (toga.Canvas method), 135
Stroke() (toga.widgets.canvas.Context method), 137
stroke() (toga.widgets.canvas.Context method), 142
StrokeContext (class in toga.widgets.canvas), 144
Switch (class in toga), 176

T
T (toga.Key attribute), 205
TAB (toga.Key attribute), 205
tab_index (toga.Widget property), 199
Table (class in toga), 180
take_photo() (toga.hardware.camera.Camera method),

95
text (toga.Button property), 129
text (toga.Label property), 158
text (toga.OptionItem property), 84
text (toga.Switch property), 176
TextInput (class in toga), 184
tick_count (toga.Slider property), 173
tick_step (toga.Slider property), 173
tick_value (toga.Slider property), 174
TILDE (toga.Key attribute), 205
TimeInput (class in toga), 186
title (toga.Window property), 71
toga (toga.paths.Paths property), 97
toga.constants

module, 200
toga.validators

module, 119
TOGA_ICON (toga.Icon attribute), 104
toggle() (toga.Switch method), 176
toolbar (toga.Window property), 71
TOP (toga.constants.Baseline attribute), 200
translate() (toga.widgets.canvas.Context method),

142
Tree (class in toga), 190
TreeSource (class in toga.sources), 115

U
U (toga.Key attribute), 205
UNDERSCORE (toga.Key attribute), 205
UP (toga.Key attribute), 205
url (toga.WebView property), 197
user_agent (toga.WebView property), 197

V
V (toga.Key attribute), 205
validators (toga.TextInput property), 185
value (toga.DateInput property), 147
value (toga.MultilineTextInput property), 161
value (toga.NumberInput property), 163
value (toga.ProgressBar property), 168
value (toga.Selection property), 171
value (toga.Slider property), 174
value (toga.Switch property), 176
value (toga.TextInput property), 185
value (toga.TimeInput property), 186
ValueSource (class in toga.sources), 118
version (toga.App property), 58
VERTICAL (toga.constants.Direction attribute), 200
VERTICAL (toga.Divider attribute), 154
vertical (toga.ScrollContainer property), 90
vertical_position (toga.ScrollContainer property),

90
VIEW (toga.Group attribute), 101
visible (toga.Window property), 71
visit_homepage() (toga.App method), 58

W
W (toga.Key attribute), 205
WebView (class in toga), 196
Widget (class in toga), 197
widgets (toga.App property), 58
widgets (toga.Window property), 71
width (toga.Image property), 106
Window (class in toga), 65
WINDOW (toga.Group attribute), 101
window (toga.Widget property), 199
windows (toga.App property), 58
write_text() (toga.widgets.canvas.Context method),

142

X
X (toga.Key attribute), 205

Y
Y (toga.Key attribute), 205

Z
Z (toga.Key attribute), 205

Index 239

	Table of contents
	Tutorial
	How-to guides
	Background
	Reference

	Community
	Tutorials
	Your first Toga app
	Set up your development environment
	Write the app
	Running the app
	Troubleshooting issues

	A slightly less toy example
	You put the box inside another box…
	Let’s build a browser!
	Let’s draw on a canvas!
	Tutorial 0 - your first Toga app
	Tutorial 1 - a slightly less toy example
	Tutorial 2 - you put the box inside another box…
	Tutorial 3 - let’s build a browser!
	Tutorial 4 - let’s draw on a canvas!

	How-to Guides
	How to get started
	Quickstart

	How to contribute code to Toga
	Set up your development environment
	What should I do?
	Fix a bug in an existing widget
	Contribute improvements to documentation
	Implement a platform native widget
	Add a new feature to an existing widget
	Implement an entirely new platform backend
	Improve the testing API for application writers

	Running the core test suite
	Running the testbed
	How the testbed works

	Submitting a pull request
	Submit from a feature branch, not your main branch
	Add change information for release notes
	It’s not just about coverage!
	Waiting for feedback

	What next?

	Contributing to Toga’s documentation
	Building Toga’s documentation
	Build documentation locally
	Documentation linting
	Rebuilding all documentation

	What to work on?
	Submitting a pull request

	Backend implementation details
	Android
	Activities and Intents

	GTK
	iOS
	Cocoa (macOS)
	Textual
	Web
	Winforms (Windows)

	Internal How-to guides
	How to cut a Toga release

	Reference
	Supported platforms
	Desktop
	macOS
	Prerequisites
	Installation
	Implementation details

	Windows
	Prerequisites
	Installation
	Implementation details

	Linux/Unix
	Prerequisites
	Installation
	Implementation details

	Mobile
	Android
	Prerequisites
	Installation
	Implementation details

	iOS
	Prerequisites
	Installation
	Implementation details

	Other
	Web
	Prerequisites
	Installation
	Implementation details

	Terminal
	Prerequisites
	Installation
	Implementation details
	macOS Terminal.app limitations

	Testing
	Prerequisites
	Installation

	Future Plans
	Unofficial support

	Toga APIs by platform
	Key
	Core Components
	General Widgets
	Layout Widgets
	Device and Hardware
	Resources

	API Reference
	Core application components
	General widgets
	Layout widgets
	Resources
	Device and Hardware
	Other
	App
	Usage
	Notes
	Reference

	DocumentApp
	Usage
	macOS
	Linux/Windows
	Reference

	Window
	Usage
	Notes
	Reference

	MainWindow
	Usage
	Reference

	Containers
	Box
	Usage
	Reference
	OptionContainer
	Usage
	Notes
	Reference
	ScrollContainer
	Usage
	Reference
	SplitContainer
	Usage
	Reference

	Device and Hardware
	Camera
	Usage
	Notes
	Reference

	Resources
	App Paths
	Usage
	Reference
	Font
	Usage
	Notes
	Reference
	Command
	Usage
	Reference
	Icon
	Usage
	Reference
	Image
	Usage
	Notes
	Reference
	Source
	Usage
	Reference
	ListSource
	Usage
	Custom List Sources
	Reference
	TreeSource
	Usage
	Custom TreeSources
	Reference
	ValueSource
	Usage
	Custom ValueSources
	Reference
	Validators
	Usage
	Reference

	Widgets
	ActivityIndicator
	Usage
	Notes
	Reference
	Button
	Usage
	Notes
	Reference
	Canvas
	Usage
	Notes
	Reference
	DateInput
	Usage
	Notes
	Reference
	DetailedList
	Usage
	Notes
	Reference
	Divider
	Usage
	Reference
	ImageView
	Usage
	Notes
	Reference
	Label
	Usage
	Notes
	Reference
	MultilineTextInput
	Usage
	Notes
	Reference
	NumberInput
	Usage
	Reference
	PasswordInput
	Usage
	Notes
	Reference
	ProgressBar
	Usage
	Notes
	Reference
	Selection
	Usage
	Notes
	Reference
	Slider
	Usage
	Reference
	Switch
	Usage
	Notes
	Reference
	Table
	Usage
	Notes
	Reference
	TextInput
	Usage
	Notes
	Reference
	TimeInput
	Usage
	Notes
	Reference
	Tree
	Usage
	Notes
	Reference
	WebView
	Usage
	Notes
	Reference
	Widget
	Reference

	Constants
	Keys
	Reference

	Style
	The Pack Style Engine
	Pack style properties
	display
	visibility
	direction
	alignment
	width
	height
	flex
	padding_top
	padding_right
	padding_bottom
	padding_left
	padding
	color
	background_color
	text_align
	text_direction
	font_family
	font_style
	font_variant
	font_weight
	font_size

	The relationship between Pack and CSS

	Background
	About the project
	Why Toga?
	Native widgets - not themes
	Abstract the broad concepts
	Python native
	pip install and nothing more
	Embrace mobile

	Why “Toga”? Why the Yak?
	So… why the name Toga?
	So… why the yak mascot?

	Success Stories
	Release History
	0.4.2 (2024-02-06)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.4.1 (2023-12-21)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.4.0 (2023-11-03)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.3.1 (2023-04-12)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.0 (2023-01-30)
	Features
	Bugfixes

	0.2.15
	0.2.14
	0.2.13
	0.2.12
	0.2.0 - 0.2.11
	0.1.2
	0.1.1
	0.1.0

	Road Map
	Widgets
	Input
	Views
	Container widgets
	Miscellaneous

	Platforms

	Topic guides
	Widget layout
	Length units
	Implementation notes

	Data Sources
	Built-in data sources
	Listeners

	Custom data sources

	Toga’s internals
	Architecture
	Interface
	Implementation
	Native
	An example

	Python Module Index
	Index

