
Toga Documentation
Release 0.3.1

Russell Keith-Magee

Apr 12, 2023

CONTENTS

1 Table of contents 3
1.1 Tutorial . 3
1.2 How-to guides . 3
1.3 Background . 3
1.4 Reference . 3

2 Community 5
2.1 Tutorials . 5
2.2 How-to Guides . 23
2.3 Reference . 35
2.4 Background . 113

Python Module Index 127

Index 129

i

ii

Toga Documentation, Release 0.3.1

Toga is a Python native, OS native, cross platform GUI toolkit. Toga consists of a library of base components with a
shared interface to simplify platform-agnostic GUI development.

Toga is available on macOS, Windows, Linux (GTK), Android, iOS, and for single-page web apps.

CONTENTS 1

Toga Documentation, Release 0.3.1

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Tutorial

Get started with a hands-on introduction to Toga for beginners.

1.2 How-to guides

Guides and recipes for common problems and tasks.

1.3 Background

Explanation and discussion of key topics and concepts.

1.4 Reference

Technical reference - commands, modules, classes, methods.

3

Toga Documentation, Release 0.3.1

4 Chapter 1. Table of contents

CHAPTER

TWO

COMMUNITY

Toga is part of the BeeWare suite. You can talk to the community through:

• @beeware@fosstodon.org on Mastodon

• Discord

• The Toga Github Discussions forum

We foster a welcoming and respectful community as described in our BeeWare Community Code of Conduct.

2.1 Tutorials

2.1.1 Your first Toga app

Note: Toga is a work in progress, and may not be consistent across all platforms.

Please check the Tutorial Issues label on GitHub to see what’s currently broken.

In this example, we’re going to build a desktop app with a single button, that prints to the console when you press the
button.

Set up your development environment

Make sure you installed the Toga prerequisites, such as Python 3 and the other libraries. Then create a working directory
for your code and change to it.

If Python 3 is not installed, you can do so via the official installer, or via pyenv, as described in the environment page.

The recommended way of setting up your development environment for Toga is to install a virtual environment, install
the required dependencies and start coding. To set up a virtual environment, run:

macOS

$ python3 -m venv venv
$ source venv/bin/activate

Linux

$ python3 -m venv venv
$ source venv/bin/activate

5

https://beeware.org/
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/
https://github.com/beeware/toga/discussions
http://beeware.org/community/behavior/
https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial-bugs
https://github.com/beeware/toga#prerequisites
https://www.python.org/downloads
https://github.com/pyenv/pyenv#simple-python-version-management-pyenv
https://beeware.org/contributing/how/first-time/setup

Toga Documentation, Release 0.3.1

Windows

C:\...>py -m venv venv
C:\...>venv\Scripts\activate.bat

Your prompt should now have a (venv) prefix in front of it.

Next, install Toga into your virtual environment:

macOS

(venv) $ python -m pip install toga

Linux

Before you install toga, you’ll need to install some system packages. These instructions are different on almost every
version of Linux; here are some of the common alternatives:

Ubuntu 18.04+ / Debian 10+
(venv) $ sudo apt-get update
(venv) $ sudo apt-get install python3-dev python3-cairo-dev python3-gi-cairo␣
→˓libgirepository1.0-dev libcairo2-dev libpango1.0-dev gir1.2-webkit2-4.0 pkg-config

Fedora
(venv) $ sudo dnf install pkg-config python3-devel gobject-introspection-devel cairo-
→˓devel cairo-gobject-devel pango-devel webkitgtk3

Arch / Manjaro
(venv) $ sudo pacman -Syu git pkgconf cairo python-cairo pango gobject-introspection␣
→˓gobject-introspection-runtime python-gobject webkit2gtk

FreeBSD
(venv) $ sudo pkg update
(venv) $ sudo pkg install gtk3 pango gobject-introspection cairo webkit2-gtk3

If you’re not using one of these, you’ll need to work out how to install the developer libraries for python3, cairo,
pango, and gobject-introspection (and please let us know so we can improve this documentation!)

Then, install toga:

(venv) $ python -m pip install toga

Windows

(venv) C:\...>python -m pip install toga

If you get other errors, please check that you followed the prerequisite instructions.

After a successful installation of Toga you are ready to get coding.

6 Chapter 2. Community

https://github.com/beeware/toga#prerequisites

Toga Documentation, Release 0.3.1

Write the app

Create a new file called helloworld.py and add the following code for the “Hello world” app:

import toga

def button_handler(widget):
print("hello")

def build(app):
box = toga.Box()

button = toga.Button("Hello world", on_press=button_handler)
button.style.padding = 50
button.style.flex = 1
box.add(button)

return box

def main():
return toga.App("First App", "org.beeware.helloworld", startup=build)

if __name__ == "__main__":
main().main_loop()

Let’s walk through this one line at a time.

The code starts with imports. First, we import toga:

import toga

Then we set up a handler, which is a wrapper around behavior that we want to activate when the button is pressed. A
handler is just a function. The function takes the widget that was activated as the first argument; depending on the type
of event that is being handled, other arguments may also be provided. In the case of a simple button press, however,
there are no extra arguments:

def button_handler(widget):
print("hello")

When the app gets instantiated (in main(), discussed below), Toga will create a window with a menu. We need to
provide a method that tells Toga what content to display in the window. The method can be named anything, it just
needs to accept an app instance:

def build(app):

We want to put a button in the window. However, unless we want the button to fill the entire app window, we can’t just
put the button into the app window. Instead, we need create a box, and put the button in the box.

A box is an object that can be used to hold multiple widgets, and to define padding around widgets. So, we define a
box:

2.1. Tutorials 7

Toga Documentation, Release 0.3.1

box = toga.Box()

We can then define a button. When we create the button, we can set the button text, and we also set the behavior that
we want to invoke when the button is pressed, referencing the handler that we defined earlier:

button = toga.Button('Hello world', on_press=button_handler)

Now we have to define how the button will appear in the window. By default, Toga uses a style algorithm called Pack,
which is a bit like “CSS-lite”. We can set style properties of the button:

button.style.padding = 50

What we’ve done here is say that the button will have a padding of 50 pixels on all sides. If we wanted to define padding
of 20 pixels on top of the button, we could have defined padding_top = 20, or we could have specified the padding
= (20, 50, 50, 50).

Now we will make the button take up all the available width:

button.style.flex = 1

The flex attribute specifies how an element is sized with respect to other elements along its direction. The default
direction is row (horizontal) and since the button is the only element here, it will take up the whole width. Check out
style docs for more information on how to use the flex attribute.

The next step is to add the button to the box:

box.add(button)

The button has a default height, defined by the way that the underlying platform draws buttons. As a result, this means
we’ll see a single button in the app window that stretches to the width of the screen, but has a 50 pixel space surrounding
it.

Now we’ve set up the box, we return the outer box that holds all the UI content. This box will be the content of the
app’s main window:

return box

Lastly, we instantiate the app itself. The app is a high level container representing the executable. The app has a name
and a unique identifier. The identifier is used when registering any app-specific system resources. By convention, the
identifier is a “reversed domain name”. The app also accepts our method defining the main window contents. We wrap
this creation process into a method called main(), which returns a new instance of our application:

def main():
return toga.App('First App', 'org.beeware.helloworld', startup=build)

The entry point for the project then needs to instantiate this entry point and start the main app loop. The call to
main_loop() is a blocking call; it won’t return until you quit the main app:

if __name__ == '__main__':
main().main_loop()

And that’s it! Save this script as helloworld.py, and you’re ready to go.

8 Chapter 2. Community

https://toga.readthedocs.io/en/latest/reference/style/pack.html#flex

Toga Documentation, Release 0.3.1

Running the app

The app acts as a Python module, which means you need to run it in a different manner than running a regular Python
script: You need to specify the -m flag and not include the .py extension for the script name.

Here is the command to run for your platform from your working directory:

macOS

(venv) $ python -m helloworld

Linux

(venv) $ python -m helloworld

Windows

(venv) C:\...>python -m helloworld

This should pop up a window with a button:

If you click on the button, you should see messages appear in the console. Even though we didn’t define anything about
menus, the app will have default menu entries to quit the app, and an About page. The keyboard bindings to quit the

2.1. Tutorials 9

Toga Documentation, Release 0.3.1

app, plus the “close” button on the window will also work as expected. The app will have a default Toga icon (a picture
of Tiberius the yak).

Troubleshooting issues

Occasionally you might run into issues running Toga on your computer.

Before you run the app, you’ll need to install toga. Although you can install toga by just running:

$ python -m pip install toga

We strongly suggest that you don’t do this. We’d suggest creating a virtual environment first, and installing toga in that
virtual environment as directed at the top of this guide.

Note: Minimum versions

Toga has some minimum requirements:

• If you’re on macOS, you need to be on 10.10 (Yosemite) or newer.

• If you’re on Linux (or another Unix-based operating system), you need to have GTK+ 3.10 or newer. This is the
version that ships starting with Ubuntu 14.04 and Fedora 20.

• If you’re on Windows, you need to have Windows 10 or newer.

If these requirements aren’t met, Toga either won’t work at all, or won’t have full functionality.

Once you’ve got toga installed, you can run your script:

(venv) $ python -m helloworld

Note: python -m helloworld vs python helloworld.py

Note the -m flag and absence of the .py extension in this command line. If you run python helloworld.py, you
may see some errors like:

NotImplementedError: Application does not define open_document()

Toga apps must be executed as modules - hence the -m flag.

2.1.2 A slightly less toy example

Note: Toga is a work in progress, and may not be consistent across all platforms.

Please check the Tutorial Issues label on GitHub to see what’s currently broken.

Most applications require a little more than a button on a page. Lets build a slightly more complex example - a Fahren-
heit to Celsius converter:

10 Chapter 2. Community

https://docs.python-guide.org/dev/virtualenvs/
https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial-bugs

Toga Documentation, Release 0.3.1

Here’s the source code:

import toga
from toga.style.pack import COLUMN, LEFT, RIGHT, ROW, Pack

def build(app):
c_box = toga.Box()
f_box = toga.Box()
box = toga.Box()

c_input = toga.TextInput(readonly=True)
f_input = toga.TextInput()

c_label = toga.Label("Celsius", style=Pack(text_align=LEFT))
f_label = toga.Label("Fahrenheit", style=Pack(text_align=LEFT))
join_label = toga.Label("is equivalent to", style=Pack(text_align=RIGHT))

def calculate(widget):
try:

c_input.value = (float(f_input.value) - 32.0) * 5.0 / 9.0
except ValueError:

c_input.value = "???"

button = toga.Button("Calculate", on_press=calculate)

f_box.add(f_input)
f_box.add(f_label)

c_box.add(join_label)
c_box.add(c_input)
c_box.add(c_label)

box.add(f_box)
box.add(c_box)
box.add(button)

box.style.update(direction=COLUMN, padding=10)
(continues on next page)

2.1. Tutorials 11

Toga Documentation, Release 0.3.1

(continued from previous page)

f_box.style.update(direction=ROW, padding=5)
c_box.style.update(direction=ROW, padding=5)

c_input.style.update(flex=1)
f_input.style.update(flex=1, padding_left=160)
c_label.style.update(width=100, padding_left=10)
f_label.style.update(width=100, padding_left=10)
join_label.style.update(width=150, padding_right=10)

button.style.update(padding=15)

return box

def main():
return toga.App("Temperature Converter", "org.beeware.f_to_c", startup=build)

if __name__ == "__main__":
main().main_loop()

This example shows off some more features of Toga’s Pack style engine. In this example app, we’ve set up an outer box
that stacks vertically; inside that box, we’ve put 2 horizontal boxes and a button.

Since there’s no width styling on the horizontal boxes, they’ll try to fit the widgets they contain into the available space.
The TextInput widgets have a style of flex=1, but the Label widgets have a fixed width; as a result, the TextInput
widgets will be stretched to fit the available horizontal space. The margin and padding terms then ensure that the
widgets will be aligned vertically and horizontally.

2.1.3 You put the box inside another box. . .

Note: Toga is a work in progress, and may not be consistent across all platforms.

Please check the Tutorial Issues label on GitHub to see what’s currently broken.

If you’ve done any GUI programming before, you will know that one of the biggest problems that any widget toolkit
solves is how to put widgets on the screen in the right place. Different widget toolkits use different approaches -
constraints, packing models, and grid-based models are all common. Toga’s Pack style engine borrows heavily from
an approach that is new for widget toolkits, but well proven in computing: Cascading Style Sheets (CSS).

If you’ve done any design for the web, you will have come across CSS before as the mechanism that you use to lay out
HTML on a web page. Although this is the reason CSS was developed, CSS itself is a general set of rules for laying
out any “boxes” that are structured in a tree-like hierarchy. GUI widgets are an example of one such structure.

To see how this works in practice, lets look at a more complex example, involving layouts, scrollers, and containers
inside other containers:

12 Chapter 2. Community

https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial-bugs

Toga Documentation, Release 0.3.1

Here’s the source code:

import toga
from toga.style.pack import COLUMN, Pack

def button_handler(widget):
print("button handler")
for i in range(0, 10):

print("hello", i)
yield 1

print("done", i)

def action0(widget):
print("action 0")

def action1(widget):
print("action 1")

(continues on next page)

2.1. Tutorials 13

Toga Documentation, Release 0.3.1

(continued from previous page)

def action2(widget):
print("action 2")

def action3(widget):
print("action 3")

def action5(widget):
print("action 5")

def action6(widget):
print("action 6")

def build(app):
brutus_icon = "icons/brutus"
cricket_icon = "icons/cricket-72.png"

data = [("root%s" % i, "value %s" % i) for i in range(1, 100)]

left_container = toga.Table(headings=["Hello", "World"], data=data)

right_content = toga.Box(style=Pack(direction=COLUMN, padding_top=50))

for b in range(0, 10):
right_content.add(

toga.Button(
"Hello world %s" % b,
on_press=button_handler,
style=Pack(width=200, padding=20),

)
)

right_container = toga.ScrollContainer(horizontal=False)

right_container.content = right_content

split = toga.SplitContainer()

The content of the split container can be specified as a simple list:
split.content = [left_container, right_container]
but you can also specify "weight" with each content item, which will
set an initial size of the columns to make a "heavy" column wider than
a narrower one. In this example, the right container will be twice
as wide as the left one.
split.content = [(left_container, 1), (right_container, 2)]

Create a "Things" menu group to contain some of the commands.
No explicit ordering is provided on the group, so it will appear

(continues on next page)

14 Chapter 2. Community

Toga Documentation, Release 0.3.1

(continued from previous page)

after application-level menus, but *before* the Command group.
Items in the Things group are not explicitly ordered either, so they
will default to alphabetical ordering within the group.
things = toga.Group("Things")
cmd0 = toga.Command(

action0,
text="Action 0",
tooltip="Perform action 0",
icon=brutus_icon,
group=things,

)
cmd1 = toga.Command(

action1,
text="Action 1",
tooltip="Perform action 1",
icon=brutus_icon,
group=things,

)
cmd2 = toga.Command(

action2,
text="Action 2",
tooltip="Perform action 2",
icon=toga.Icon.TOGA_ICON,
group=things,

)

Commands without an explicit group end up in the "Commands" group.
The items have an explicit ordering that overrides the default
alphabetical ordering
cmd3 = toga.Command(

action3,
text="Action 3",
tooltip="Perform action 3",
shortcut=toga.Key.MOD_1 + "k",
icon=cricket_icon,
order=3,

)

Define a submenu inside the Commands group.
The submenu group has an order that places it in the parent menu.
The items have an explicit ordering that overrides the default
alphabetical ordering.
sub_menu = toga.Group("Sub Menu", parent=toga.Group.COMMANDS, order=2)
cmd5 = toga.Command(

action5, text="Action 5", tooltip="Perform action 5", order=2, group=sub_menu
)
cmd6 = toga.Command(

action6, text="Action 6", tooltip="Perform action 6", order=1, group=sub_menu
)

def action4(widget):
print("CALLING Action 4")

(continues on next page)

2.1. Tutorials 15

Toga Documentation, Release 0.3.1

(continued from previous page)

cmd3.enabled = not cmd3.enabled

cmd4 = toga.Command(
action4, text="Action 4", tooltip="Perform action 4", icon=brutus_icon, order=1

)

The order in which commands are added to the app or the toolbar won't
alter anything. Ordering is defined by the command definitions.
app.commands.add(cmd1, cmd0, cmd6, cmd4, cmd5, cmd3)
app.main_window.toolbar.add(cmd1, cmd3, cmd2, cmd4)

return split

def main():
return toga.App("First App", "org.beeware.helloworld", startup=build)

if __name__ == "__main__":
main().main_loop()

In order to render the icons, you will need to move the icons folder into the same directory as your app file.

Here are the Icons

In this example, we see a couple of new Toga widgets - Table, SplitContainer, and ScrollContainer. You can
also see that CSS styles can be added in the widget constructor. Lastly, you can see that windows can have toolbars.

2.1.4 Let’s build a browser!

Note: Toga is a work in progress, and may not be consistent across all platforms.

Please check the Tutorial Issues label on GitHub to see what’s currently broken.

Although it’s possible to build complex GUI layouts, you can get a lot of functionality with very little code, utilizing
the rich components that are native on modern platforms.

So - let’s build a tool that lets our pet yak graze the web - a primitive web browser, in less than 40 lines of code!

16 Chapter 2. Community

https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial-bugs

Toga Documentation, Release 0.3.1

Here’s the source code:

import toga
from toga.style.pack import CENTER, COLUMN, ROW, Pack

class Graze(toga.App):
def startup(self):

self.main_window = toga.MainWindow(title=self.name)

self.webview = toga.WebView(
on_webview_load=self.on_webview_loaded, style=Pack(flex=1)

)
self.url_input = toga.TextInput(

value="https://beeware.org/", style=Pack(flex=1)
)

box = toga.Box(
children=[

toga.Box(
children=[

self.url_input,
(continues on next page)

2.1. Tutorials 17

Toga Documentation, Release 0.3.1

(continued from previous page)

toga.Button(
"Go",
on_press=self.load_page,
style=Pack(width=50, padding_left=5),

),
],
style=Pack(

direction=ROW,
alignment=CENTER,
padding=5,

),
),
self.webview,

],
style=Pack(direction=COLUMN),

)

self.main_window.content = box
self.webview.url = self.url_input.value

Show the main window
self.main_window.show()

def load_page(self, widget):
self.webview.url = self.url_input.value

def on_webview_loaded(self, widget):
self.url_input.value = self.webview.url

def main():
return Graze("Graze", "org.beeware.graze")

if __name__ == "__main__":
main().main_loop()

In this example, you can see an application being developed as a class, rather than as a build method. You can also see
boxes defined in a declarative manner - if you don’t need to retain a reference to a particular widget, you can define a
widget inline, and pass it as an argument to a box, and it will become a child of that box.

2.1.5 Let’s draw on a canvas!

Note: Toga is a work in progress, and may not be consistent across all platforms.

Please check the Tutorial Issues label on GitHub to see what’s currently broken.

One of the main capabilities needed to create many types of GUI applications is the ability to draw and manipulate
lines, shapes, text, and other graphics. To do this in Toga, we use the Canvas Widget.

Utilizing the Canvas is as easy as determining the drawing operations you want to perform and then creating a new

18 Chapter 2. Community

https://github.com/beeware/toga/issues?q=is%3Aopen+is%3Aissue+label%3Atutorial-bugs

Toga Documentation, Release 0.3.1

Canvas. All drawing objects that are created with one of the drawing operations are returned so that they can be modified
or removed.

1. We first define the drawing operations we want to perform in a new function:

def draw_eyes(self):
with self.canvas.fill(color=WHITE) as eye_whites:

eye_whites.arc(58, 92, 15)
eye_whites.arc(88, 92, 15, math.pi, 3 * math.pi)

Notice that we also created and used a new fill context called eye_whites. The “with” keyword that is used for the fill
operation causes everything draw using the context to be filled with a color. In this example we filled two circular eyes
with the color white.

2. Next we create a new Canvas:

self.canvas = toga.Canvas(style=Pack(flex=1))

That’s all there is to! In this example we also add our canvas to the MainWindow through use of the Box Widget:

box = toga.Box(children=[self.canvas])
self.main_window.content = box

You’ll also notice in the full example below that the drawing operations utilize contexts in addition to fill including
context, closed_path, and stroke. This reduces the repetition of commands as well as groups drawing operations so that
they can be modified together.

Here’s the source code

import math

import toga
from toga.colors import WHITE, rgb
from toga.fonts import SANS_SERIF
from toga.style import Pack

class StartApp(toga.App):
def startup(self):

(continues on next page)

2.1. Tutorials 19

Toga Documentation, Release 0.3.1

(continued from previous page)

Main window of the application with title and size
self.main_window = toga.MainWindow(title=self.name, size=(148, 250))

Create canvas and draw tiberius on it
self.canvas = toga.Canvas(style=Pack(flex=1))
box = toga.Box(children=[self.canvas])

Add the content on the main window
self.main_window.content = box

self.draw_tiberius()

Show the main window
self.main_window.show()

def fill_head(self):
with self.canvas.fill(color=rgb(149, 119, 73)) as head_filler:

head_filler.move_to(112, 103)
head_filler.line_to(112, 113)
head_filler.ellipse(73, 114, 39, 47, 0, 0, math.pi)
head_filler.line_to(35, 84)
head_filler.arc(65, 84, 30, math.pi, 3 * math.pi / 2)
head_filler.arc(82, 84, 30, 3 * math.pi / 2, 2 * math.pi)

def stroke_head(self):
with self.canvas.stroke(line_width=4.0) as head_stroker:

with head_stroker.closed_path(112, 103) as closed_head:
closed_head.line_to(112, 113)
closed_head.ellipse(73, 114, 39, 47, 0, 0, math.pi)
closed_head.line_to(35, 84)
closed_head.arc(65, 84, 30, math.pi, 3 * math.pi / 2)
closed_head.arc(82, 84, 30, 3 * math.pi / 2, 2 * math.pi)

def draw_eyes(self):
with self.canvas.fill(color=WHITE) as eye_whites:

eye_whites.arc(58, 92, 15)
eye_whites.arc(88, 92, 15, math.pi, 3 * math.pi)

with self.canvas.stroke(line_width=4.0) as eye_outline:
eye_outline.arc(58, 92, 15)
eye_outline.arc(88, 92, 15, math.pi, 3 * math.pi)

with self.canvas.fill() as eye_pupils:
eye_pupils.arc(58, 97, 3)
eye_pupils.arc(88, 97, 3)

def draw_horns(self):
with self.canvas.context() as r_horn:

with r_horn.fill(color=rgb(212, 212, 212)) as r_horn_filler:
r_horn_filler.move_to(112, 99)
r_horn_filler.quadratic_curve_to(145, 65, 139, 36)
r_horn_filler.quadratic_curve_to(130, 60, 109, 75)

with r_horn.stroke(line_width=4.0) as r_horn_stroker:
r_horn_stroker.move_to(112, 99)

(continues on next page)

20 Chapter 2. Community

Toga Documentation, Release 0.3.1

(continued from previous page)

r_horn_stroker.quadratic_curve_to(145, 65, 139, 36)
r_horn_stroker.quadratic_curve_to(130, 60, 109, 75)

with self.canvas.context() as l_horn:
with l_horn.fill(color=rgb(212, 212, 212)) as l_horn_filler:

l_horn_filler.move_to(35, 99)
l_horn_filler.quadratic_curve_to(2, 65, 6, 36)
l_horn_filler.quadratic_curve_to(17, 60, 37, 75)

with l_horn.stroke(line_width=4.0) as l_horn_stroker:
l_horn_stroker.move_to(35, 99)
l_horn_stroker.quadratic_curve_to(2, 65, 6, 36)
l_horn_stroker.quadratic_curve_to(17, 60, 37, 75)

def draw_nostrils(self):
with self.canvas.fill(color=rgb(212, 212, 212)) as nose_filler:

nose_filler.move_to(45, 145)
nose_filler.bezier_curve_to(51, 123, 96, 123, 102, 145)
nose_filler.ellipse(73, 114, 39, 47, 0, math.pi / 4, 3 * math.pi / 4)

with self.canvas.fill() as nostril_filler:
nostril_filler.arc(63, 140, 3)
nostril_filler.arc(83, 140, 3)

with self.canvas.stroke(line_width=4.0) as nose_stroker:
nose_stroker.move_to(45, 145)
nose_stroker.bezier_curve_to(51, 123, 96, 123, 102, 145)

def draw_text(self):
x = 32
y = 185
font = toga.Font(family=SANS_SERIF, size=20)
width, height = self.canvas.measure_text("Tiberius", font, tight=True)
with self.canvas.stroke(line_width=4.0) as rect_stroker:

rect_stroker.rect(x - 2, y - height + 2, width, height + 2)
with self.canvas.fill(color=rgb(149, 119, 73)) as text_filler:

text_filler.write_text("Tiberius", x, y, font)

def draw_tiberius(self):
self.fill_head()
self.draw_eyes()
self.draw_horns()
self.draw_nostrils()
self.stroke_head()
self.draw_text()

def main():
return StartApp("Tutorial 4", "org.beeware.helloworld")

if __name__ == "__main__":
main().main_loop()

In this example, we see a new Toga widget - Canvas.

2.1. Tutorials 21

Toga Documentation, Release 0.3.1

2.1.6 Tutorial 0 - your first Toga app

In Your first Toga app, you will discover how to create a basic app and have a simple toga.widgets.button.Button
widget to click.

2.1.7 Tutorial 1 - a slightly less toy example

In A slightly less toy example, you will discover how to capture basic user input using the toga.widgets.textinput.
TextInput widget and control layout.

2.1.8 Tutorial 2 - you put the box inside another box. . .

In You put the box inside another box. . . , you will discover how to use the toga.widgets.splitcontainer.
SplitContainer widget to display some components, a toolbar and a table.

2.1.9 Tutorial 3 - let’s build a browser!

In Let’s build a browser!, you will discover how to use the toga.widgets.webview.WebView widget to display a
simple browser.

22 Chapter 2. Community

Toga Documentation, Release 0.3.1

2.1.10 Tutorial 4 - let’s draw on a canvas!

In Let’s draw on a canvas!, you will discover how to use the toga.widgets.canvas.Canvas widget to draw lines
and shapes on a canvas.

2.2 How-to Guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and
assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

2.2. How-to Guides 23

Toga Documentation, Release 0.3.1

2.2.1 How to get started

Quickstart

Create a new virtualenv. In your virtualenv, install Toga, and then run it:

$ python -m pip install toga-demo
$ toga-demo

This will pop up a GUI window showing the full range of widgets available to an application using Toga.

Have fun, and see the Reference to learn more about what’s going on.

2.2.2 How to contribute code to Toga

If you experience problems with Toga, log them on GitHub. If you want to contribute code, please fork the code and
submit a pull request. You may also find this presentation by BeeWare team member Dan Yeaw helpful. This talk gives
an architectural overview of Toga, as well as providing a guide to the process of adding new widgets.

Set up your development environment

First thing is to ensure that you have Python 3 and pip installed. To do this run the following commands:

macOS

$ python3 --version
$ pip3 --version

Linux

$ python3 --version
$ pip3 --version

Windows

C:\...>python3 --version
C:\...>pip3 --version

The recommended way of setting up your development environment for Toga is to install a virtual environment, install
the required dependencies and start coding. To set up a virtual environment, run:

macOS

$ python3 -m venv venv
$ source venv/bin/activate

Linux

$ python3 -m venv venv
$ source venv/bin/activate

Windows

24 Chapter 2. Community

https://github.com/beeware/toga/issues
https://github.com/beeware/toga
https://github.com/beeware/toga/pulls
https://youtu.be/sWt_sEZUiY8

Toga Documentation, Release 0.3.1

C:\...>python3 -m venv venv
C:\...>venv/Scripts/activate

Your prompt should now have a (venv) prefix in front of it.

Next, install any additional dependencies for your operating system:

macOS

No additional dependencies

Linux

Ubuntu 18.04+, Debian 10+
(venv) $ sudo apt-get update
(venv) $ sudo apt-get install python3-dev libgirepository1.0-dev libcairo2-dev libpango1.
→˓0-dev libwebkit2gtk-4.0-37 gir1.2-webkit2-4.0

Fedora
(venv) $ sudo dnf install pkg-config python3-devel gobject-introspection-devel cairo-
→˓devel cairo-gobject-devel pango-devel webkitgtk3

Arch / Manjaro
(venv) $ sudo pacman -Syu git pkgconf cairo python-cairo pango gobject-introspection␣
→˓gobject-introspection-runtime python-gobject webkit2gtk

FreeBSD
(venv) $ sudo pkg update
(venv) $ sudo pkg install gtk3 pango gobject-introspection cairo webkit2-gtk3

Windows

No additional dependencies

Next, go to the Toga page on GitHub, and fork the repository into your own account, and then clone a copy of that
repository onto your computer by clicking on “Clone or Download”. If you have the GitHub desktop application
installed on your computer, you can select “Open in Desktop”; otherwise, copy the URL provided, and use it to clone
using the command line:

macOS

Fork the Toga repository, and then:

(venv) $ git clone https://github.com/<your username>/toga.git

(substituting your GitHub username)

Linux

Fork the Toga repository, and then:

(venv) $ git clone https://github.com/<your username>/toga.git

(substituting your GitHub username)

Windows

Fork the Toga repository, and then:

2.2. How-to Guides 25

https://github.com/beeware/toga

Toga Documentation, Release 0.3.1

(venv) C:\...>git clone https://github.com/<your username>/toga.git

(substituting your GitHub username)

Now that you have the source code, you can install Toga into your development environment. The Toga source repos-
itory contains multiple packages. Since we’re installing from source, we can’t rely on pip to install the packages in
dependency order. Therefore, we have to manually install each package in a specific order:

macOS

(venv) $ cd toga
(venv) $ pip install -e ./core[dev]
(venv) $ pip install -e ./dummy
(venv) $ pip install -e ./cocoa

Linux

(venv) $ cd toga
(venv) $ pip install -e ./core[dev]
(venv) $ pip install -e ./dummy
(venv) $ pip install -e ./gtk

Windows

(venv) C:\...>cd toga
(venv) C:\...>pip install -e ./core[dev]
(venv) C:\...>pip install -e ./dummy
(venv) C:\...>pip install -e ./winforms

This project uses a tool called Pre-Commit to identify simple issues and standardize code formatting. It does this
by installing a git hook that automatically runs a series of code linters prior to finalizing any git commit. To enable
pre-commit, run:

macOS

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

Linux

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

Windows

(venv) C:\...>pre-commit install
pre-commit installed at .git/hooks/pre-commit

When you commit any change, pre-commit will run automatically. If there are any issues found with the commit, this
will cause your commit to fail. Where possible, pre-commit will make the changes needed to correct the problems it
has found:

macOS

26 Chapter 2. Community

https://pre-commit.com

Toga Documentation, Release 0.3.1

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

Linux

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

Windows

(venv) C:\...>git add some/interesting_file.py
(venv) C:\...>git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

(continues on next page)

2.2. How-to Guides 27

Toga Documentation, Release 0.3.1

(continued from previous page)

reformatted some\interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

You can then re-add any files that were modified as a result of the pre-commit checks, and re-commit the change.

macOS

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
[bugfix e3e0f73] Minor change
1 file changed, 4 insertions(+), 2 deletions(-)

Linux

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
[bugfix e3e0f73] Minor change

(continues on next page)

28 Chapter 2. Community

Toga Documentation, Release 0.3.1

(continued from previous page)

1 file changed, 4 insertions(+), 2 deletions(-)

Windows

(venv) C:\...>git add some\interesting_file.py
(venv) C:\...>git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

Now you are ready to start hacking on Toga!

What should I do?

Start by running the core test suite. Toga uses tox to manage the testing process. To run the core test suite:

macOS

(venv) $ tox -e py-core

Linux

(venv) $ tox -e py-core

Windows

(venv) C:\...>tox -e py-core

You should get some output indicating that tests have been run. You shouldn’t ever get any FAIL or ERROR test results.
We run our full test suite before merging every patch. If that process discovers any problems, we don’t merge the patch.
If you do find a test error or failure, either there’s something odd in your test environment, or you’ve found an edge case
that we haven’t seen before - either way, let us know!

Although the tests should all pass, the test suite itself is still incomplete. There are many aspects of the Toga Core API
that aren’t currently tested (or aren’t tested thoroughly). To work out what isn’t tested, we’re going to use a tool called
coverage. Coverage allows you to check which lines of code have (and haven’t) been executed - which then gives you
an idea of what code has (and hasn’t) been tested.

At the end of the test output there should be a report of the coverage data that was gathered:

Name Stmts Miss Cover Missing
--
toga/__init__.py 29 0 100%
toga/app.py 50 0 100%
...

(continues on next page)

2.2. How-to Guides 29

https://tox.readthedocs.io/en/latest/
https://coverage.readthedocs.io/

Toga Documentation, Release 0.3.1

(continued from previous page)

toga/window.py 79 18 77% 58, 75, 87, 92, 104, 141, 155,
→˓ 164, 168, 172-173, 176, 192, 204, 216, 228, 243, 257
--
TOTAL 1034 258 75%

What does this all mean? Well, the “Cover” column tells you what proportion of lines in a given file were executed
during the test run. In this run, every line of toga/app.py was executed; but only 77% of lines in toga/window.
py were executed. Which lines were missed? They’re listed in the next column: lines 58, 75, 87, and so on weren’t
executed.

That’s what you have to fix - ideally, every single line in every single file will have 100% coverage. If you look in
core/tests, you should find a test file that matches the name of the file that has insufficient coverage. If you don’t, it’s
possible the entire test file is missing - so you’ll have to create it!

Your task: create a test that improves coverage - even by one more line.

Once you’ve written a test, re-run the test suite to generate fresh coverage data. Let’s say we added a test for line 58 of
toga/window.py - we’d expect to see something like:

Name Stmts Miss Cover Missing
--
toga/__init__.py 29 0 100%
toga/app.py 50 0 100%
...
toga/window.py 79 17 78% 75, 87, 92, 104, 141, 155,␣
→˓164, 168, 172-173, 176, 192, 204, 216, 228, 243, 257
--
TOTAL 1034 257 75%

That is, one more test has been executed, resulting in one less missing line in the coverage results.

Add change information for release notes

Before you submit this change as a pull request, there’s one more thing required. Toga uses towncrier to automate
building release notes. To support this, every pull request needs to have a corresponding file in the changes/ directory
that provides a short description of the change implemented by the pull request.

This description should be a high level summary of the change from the perspective of the user, not a deep technical
description or implementation detail. It is distinct from a commit message - a commit message describes what has been
done so that future developers can follow the reasoning for a change; the change note is a “user facing” description.
For example, if you fix a bug caused by date handling, the commit message might read:

Modified date validation to accept US-style MM-DD-YYYY format.

The corresponding change note would read something like:

Date widgets can now accept US-style MM-DD-YYYY format.

See News Fragments for more details on the types of news fragments you can add. You can also see existing examples of
news fragments in the changes/ folder. Name the file using the number of the issue that your pull request is addressing.
When there isn’t an existing issue, you can create the pull request in two passes: First submit it without a change note
- this will fail, but will also assign a pull request number. You can then push an update to the pull request, adding the
change note with the assigned number.

Once you’ve written your code, test, and change note, you can submit your changes as a pull request. One of the core
team will review your work, and give feedback. If any changes are requested, you can make those changes, and update

30 Chapter 2. Community

https://pypi.org/project/towncrier/
https://towncrier.readthedocs.io/en/stable/tutorial.html#creating-news-fragments

Toga Documentation, Release 0.3.1

your pull request; eventually, the pull request will be accepted and merged. Congratulations, you’re a contributor to
Toga!

It’s not just about coverage!

Although improving test coverage is the goal, the task ahead of you isn’t just about increasing numerical coverage. Part
of the task is to audit the code as you go. You could write a comprehensive set of tests for a concrete life jacket. . . but
a concrete life jacket would still be useless for the purpose it was intended!

As you develop tests and improve coverage, you should be checking that the core module is internally consistent as well.
If you notice any method names that aren’t internally consistent (e.g., something called on_select in one module, but
called on_selected in another), or where the data isn’t being handled consistently (one widget updates then refreshes,
but another widget refreshes then updates), flag it and bring it to our attention by raising a ticket. Or, if you’re confident
that you know what needs to be done, create a pull request that fixes the problem you’ve found.

One example of the type of consistency we’re looking for is described in this ticket.

What next?

Rinse and repeat! Having improved coverage by one line, go back and do it again for another coverage line!

If you’re feeling particularly adventurous, you could start looking at a specific platform backend. The Toga Dummy API
defines the API that a backend needs to implement; so find a platform backend of interest to you (e.g., cocoa if you’re
on macOS), and look for a widget that isn’t implemented (a missing file in the widgets directory for that platform,
or an API on a widget that isn’t implemented (these will be flagged by raising NotImplementedError()). Dig into
the documentation for native widgets for that platform (e.g., the Apple Cocoa documentation), and work out how to
map native widget capabilities to the Toga API. You may find it helpful to look at existing widgets to work out what is
needed.

Most importantly - have fun!

Advanced Mode

If you’ve got expertise in a particular platform (for example, if you’ve got experience writing iOS apps), or you’d like
to have that experience, you might want to look into a more advanced problem. Here are some suggestions:

• Implement a platform native widget If the core library already specifies an interface, implement that interface;
if no interface exists, propose an interface design, and implement it for at least one platform.

• Add a new feature to an existing widget API Can you think of a feature than an existing widget should have?
Propose a new API for that widget, and provide a sample implementation.

• Improve platform specific testing The tests that have been described in this document are all platform indepen-
dent. They use the dummy backend to validate that data is being passed around correctly, but they don’t validate
that on a given platform, widgets behave they way they should. If I put a button on a Toga app, is that button
displayed? Is it in the right place? Does it respond to mouse clicks? Ideally, we’d have automated tests to validate
these properties. However, automated tests of GUI operations can be difficult to set up. If you’ve got experience
with automated GUI testing, we’d love to hear your suggestions.

• Improve the testing API for application writers The dummy backend exists to validate that Toga’s internal API
works as expected. However, we would like it to be a useful resource for application authors as well. Testing GUI
applications is a difficult task; a Dummy backend would potentially allow an end user to write an application, and
validate behavior by testing the properties of the Dummy. Think of it as a GUI mock - but one that is baked into
Toga as a framework. See if you can write a GUI app of your own, and write a test suite that uses the Dummy
backend to validate the behavior of that app.

2.2. How-to Guides 31

https://github.com/beeware/toga/issues/299

Toga Documentation, Release 0.3.1

2.2.3 Contributing to the documentation

Here are some tips for working on this documentation. You’re welcome to add more and help us out!

First of all, you should check the Restructured Text (reST) and Sphinx CheatSheet to learn how to write your .rst file.

Create a .rst file

Look at the structure and choose the best category to put your .rst file. Make sure that it is referenced in the index
of the corresponding category, so it will show on in the documentation. If you have no idea how to do this, study the
other index files for clues.

Build documentation locally

To build the documentation locally, set up a development environment.

You’ll also need to install the Enchant spell checking library.

macOS

Enchant can be installed using Homebrew:

(venv) $ brew install enchant

If you’re on an M1 machine, you’ll also need to manually set the location of the Enchant library:

(venv) $ export PYENCHANT_LIBRARY_PATH=/opt/homebrew/lib/libenchant-2.2.dylib

Linux

Enchant can be installed as a system package:

Ubuntu 20.04+ / Debian 10+

$ sudo apt-get update
$ sudo apt-get install enchant-2

Fedora

$ sudo dnf install enchant

Arch, Manjaro

$ sudo pacman -Syu enchant

Windows

Enchant is installed automatically when you set up your development environment.

Once your development environment is set up, run:

macOS

(venv) $ tox -e docs

Linux

32 Chapter 2. Community

http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html
https://brew.sh

Toga Documentation, Release 0.3.1

(venv) $ tox -e docs

Windows

(venv) C:\...>tox -e docs

The output of the file should be in the docs/_build/html folder. If there are any markup problems, they’ll raise an
error.

Documentation linting

Before committing and pushing documentation updates, run linting for the documentation:

macOS

(venv) $ tox -e docs-lint

Linux

(venv) $ tox -e docs-lint

Windows

(venv) C:\...>tox -e docs-lint

This will validate the documentation does not contain:

• invalid syntax and markup

• dead hyperlinks

• misspelled words

If a valid spelling of a word is identified as misspelled, then add the word to the list in docs/spelling_wordlist.
This will add the word to the spellchecker’s dictionary.

If you get an error related to SSL certificate verification:

Exception occurred:
File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/ssl.py", line␣

→˓1342, in do_handshake
self._sslobj.do_handshake()

ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify␣
→˓failed: unable to get local issuer certificate (_ssl.c:1007)

The root certificate on your machine is out of date. You can correct this by installing the Python package certifi, and
using that package to provide your SSL root certificate:

macOS

(venv) $ python -m pip install certifi
(venv) $ export SSL_CERT_FILE=$(python -m certifi)

Linux

(venv) $ python -m pip install certifi
(venv) $ export SSL_CERT_FILE=$(python -m certifi)

2.2. How-to Guides 33

Toga Documentation, Release 0.3.1

Windows

(venv) C:\...>python -m pip install certifi
(venv) C:\...>FOR /f "delims=" %i IN ('python -m certifi') DO SET SSL_CERT_FILE=%i

Rebuilding all documentation

To force a rebuild for all of the documentation:

macOS

(venv) $ tox -e docs-all

Linux

(venv) $ tox -e docs-all

Windows

(venv) C:\...>tox -e docs-all

The documentation should be fully rebuilt in the docs/_build/html folder. If there are any markup problems, they’ll
raise an error.

2.2.4 Internal How-to guides

These guides are for the maintainers of the Toga project, documenting internal project procedures.

How to cut a Toga release

The release infrastructure for Toga is semi-automated, using GitHub Actions to formally publish releases.

This guide assumes that you have an upstream remote configured on your local clone of the Toga repository, pointing
at the official repository. If all you have is a checkout of a personal fork of the Toga repository, you can configure that
checkout by running:

$ git remote add upstream https://github.com/beeware/toga.git

The procedure for cutting a new release is as follows:

1. Check the contents of the upstream repository’s main branch:

$ git fetch upstream
$ git checkout --detach upstream/main

Check that the HEAD of release now matches upstream/main.

2. Ensure that the release notes are up to date. Run:

$ tox -e towncrier -- --draft

to review the release notes that will be included, and then:

34 Chapter 2. Community

Toga Documentation, Release 0.3.1

$ tox -e towncrier

to generate the updated release notes.

3. Tag the release, and push the branch and tag upstream:

$ git tag v1.2.3
$ git push upstream HEAD:main
$ git push upstream v1.2.3

4. Pushing the tag will start a workflow to create a draft release on GitHub. You can follow the progress of the
workflow on GitHub; once the workflow completes, there should be a new draft release, and entries on the
TestPyPI server for toga-core, toga-cocoa, etc.

Confirm that this action successfully completes. If it fails, there’s a couple of possible causes:

a. The final upload to TestPyPI failed. TestPyPI doesn’t have the same service monitoring as PyPI-proper, so
it sometimes has problems. However, it’s not critical to the release process.

b. Something else fails in the build process. If the problem can be fixed without a code change to the Toga
repository (e.g., a transient problem with build machines not being available), you can re-run the action
that failed through the GitHub Actions GUI. If the fix requires a code change, delete the old tag, make the
code change, and re-tag the release.

5. Download the “packages” artifact from the GitHub workflow, and use its wheels to build some apps and perform
any pre-release testing that may be appropriate.

6. Log into ReadTheDocs, visit the Versions tab, and activate the new version. Ensure that the build completes; if
there’s a problem, you may need to correct the build configuration, roll back and re-tag the release.

7. Edit the GitHub release. Add release notes (you can use the text generated by towncrier). Check the pre-release
checkbox if necessary.

8. Double check everything, then click Publish. This will trigger a publication workflow on GitHub.

9. Wait for the packages to appear on PyPI (toga-core, toga-cocoa, etc.).

Congratulations, you’ve just published a release!

Once the release has successfully appeared on PyPI or TestPyPI, it cannot be changed. If you spot a problem after that
point, you’ll need to restart with a new version number.

2.3 Reference

2.3.1 Toga supported platforms

Official platform support

Desktop platforms

2.3. Reference 35

https://github.com/beeware/toga/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/toga/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/toga/releases
https://test.pypi.org/project/toga-core/
https://test.pypi.org/project/toga-cocoa/
https://readthedocs.org/projects/toga/versions/
https://github.com/beeware/toga/actions?query=workflow%3A%22Upload+Python+Package%22
https://pypi.org/project/toga-core/
https://pypi.org/project/toga-cocoa/

Toga Documentation, Release 0.3.1

macOS

The backend for macOS is named toga-cocoa. It supports macOS 10.10 (Yosemite) and later. It is installed auto-
matically on macOS machines (machines that report sys.platform == 'darwin'), or can be manually installed by
invoking:

$ pip install toga-cocoa

The macOS backend has seen the most development to date. It uses Rubicon to provide a bridge to native macOS
libraries.

36 Chapter 2. Community

https://github.com/beeware/toga/tree/main/cocoa
https://github.com/beeware/rubicon-objc

Toga Documentation, Release 0.3.1

Linux

The backend for Linux platforms is named toga-gtk. It supports GTK 3.4 and later. It is installed automatically on
Linux machines (machines that report sys.platform == 'linux'), or can be manually installed by invoking:

$ pip install toga-gtk

The GTK backend is reasonably well developed, but currently has some known issues with widget layout. It uses the
native GObject Python bindings.

2.3. Reference 37

https://github.com/beeware/toga/tree/main/gtk

Toga Documentation, Release 0.3.1

Windows

The backend for Windows is named toga-winforms. It supports Windows 10 with .NET 4 installed. It is installed
automatically on Windows machines (machines that report sys.platform == 'win32'), or can be manually installed
by invoking:

$ pip install toga-winforms

It uses Python.net. Unfortunately, python.net has not been packaged for Python 3.9 or higher, so you’ll need to use
Python 3.8 or earlier in your app.

Mobile platforms

iOS

The backend for iOS is named toga-iOS. It supports iOS 6 or later. It must be manually installed into an iOS Python
project (such as one that has been developed using the Python-iOS-template cookiecutter). It can be manually installed
by invoking:

38 Chapter 2. Community

https://github.com/beeware/toga/tree/main/winforms
https://pythonnet.github.io
https://github.com/beeware/toga/tree/main/iOS
https://github.com/beeware/Python-iOS-template

Toga Documentation, Release 0.3.1

$ pip install toga-iOS

The iOS backend is currently proof-of-concept only. Most widgets have not been implemented. It uses Rubicon to
provide a bridge to native macOS libraries.

Android

The backend for Android is named toga-android. It can be manually installed by invoking:

$ pip install toga-android

The android backend is currently proof-of-concept only. Most widgets have not been implemented. It uses Chaquopy
to provide a way to access the Android Java libraries and implement Java interfaces in Python.

Web

The Web backend is named toga-web. It can be manually installed by invoking:

$ pip install toga-web

The Web backend is currently proof-of-concept only. Most widgets have not been implemented. It uses PyScript to
run Python code in the browser.

The Dummy platform

Toga also provides a Dummy platform - this is a backend that implements the full interface required by a platform
backend, but does not display any widgets visually. It is intended for use in tests, and provides an API that can be used
to verify widget operation.

Planned platform support

Eventually, the Toga project would like to provide support for the following platforms:

• UWP (Native Windows 8 and Windows mobile)

• Qt (for KDE based desktops)

• tvOS (for AppleTV devices)

• watchOS (for AppleWatch devices)

• Curses (for console)

If you are interested in these platforms and would like to contribute, please get in touch on Mastodon or Discord.

2.3. Reference 39

https://github.com/beeware/rubicon-objc
https://github.com/beeware/toga/tree/main/android
https://chaquo.com/chaquopy/
https://github.com/beeware/toga/tree/main/web
https://pyscript.net
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/

Toga Documentation, Release 0.3.1

Unofficial platform support

At present, there are no known unofficial platform backends.

2.3.2 Toga APIs by platform

Key

Partly supported: functionality or testing is incomplete
Fully supported

Core Components

Component macOS GTK Win-
dows

iOS Android Web

App
Window
MainWindow

General Widgets

Component macOS GTK Win-
dows

iOS Android Web

ActivityIndicator
Button
Canvas
DatePicker
DetailedList
Divider
ImageView
Label
MultilineTextInput
NumberInput
PasswordInput
ProgressBar
Selection
Slider
Switch
Table
TextInput
TimePicker
Tree
WebView
Widget

40 Chapter 2. Community

Toga Documentation, Release 0.3.1

Layout Widgets

Component macOS GTK Win-
dows

iOS Android Web

Box
ScrollContainer
SplitContainer
OptionContainer

Resources

Component macOS GTK Win-
dows

iOS Android Web

Font
Command
Group
Icon
Image

2.3.3 API Reference

Core application components

Component Description
Application The application itself
Window Window object
MainWindow Main Window

2.3. Reference 41

Toga Documentation, Release 0.3.1

General widgets

Component Description
ActivityIndicator A (spinning) activity indicator
Button Basic clickable Button
Canvas Area you can draw on
DetailedList A list of complex content
Divider A horizontal or vertical line
ImageView Image Viewer
Label Text label
MultilineTextInput Multi-line Text Input field
NumberInput Number Input field
PasswordInput A text input that hides it’s input
ProgressBar Progress Bar
Selection Selection
Slider Slider
Switch Switch
Table Table of data
TextInput Text Input field
Tree Tree of data
WebView A panel for displaying HTML
Widget The base widget

Layout widgets

Usage Description
Box Container for components
ScrollContainer Scrollable Container
SplitContainer Split Container
OptionContainer Option Container

Resources

Component Description
Font Fonts
Command Command
Group Command group
Icon An icon for buttons, menus, etc
Image An image

42 Chapter 2. Community

Toga Documentation, Release 0.3.1

Application

Table 5: Availability (Key)

macOS GTK Windows iOS Android Web

The app is the main entry point and container for the Toga GUI.

Usage

The app class is used by instantiating with a name, namespace and callback to a startup delegate which takes 1 argument
of the app instance.

To start a UI loop, call app.main_loop()

import toga

def build(app):
build UI
pass

if __name__ == '__main__':
app = toga.App('First App', 'org.beeware.helloworld', startup=build)
app.main_loop()

Alternatively, you can subclass App and implement the startup method

import toga

class MyApp(toga.App):
def startup(self):

build UI
pass

if __name__ == '__main__':
app = MyApp('First App', 'org.beeware.helloworld')
app.main_loop()

2.3. Reference 43

Toga Documentation, Release 0.3.1

Reference

class toga.app.App(formal_name=None, app_id=None, app_name=None, id=None, icon=None, author=None,
version=None, home_page=None, description=None, startup=None, windows=None,
on_exit=None, factory=None)

The App is the top level of any GUI program. It is the manager of all the other bits of the GUI app: the main
window and events that window generates like user input.

When you create an App you need to provide it a name, an id for uniqueness (by convention, the identifier is a
reversed domain name.) and an optional startup function which should run once the App has initialized. The
startup function typically constructs some initial user interface.

If the name and app_id are not provided, the application will attempt to find application metadata. This process
will determine the module in which the App class is defined, and look for a .dist-info file matching that name.

Once the app is created you should invoke the main_loop() method, which will hand over execution of your
program to Toga to make the App interface do its thing.

The absolute minimum App would be:

>>> app = toga.App(formal_name='Empty App', app_id='org.beeware.empty')
>>> app.main_loop()

Parameters
• formal_name – The formal name of the application. Will be derived from packaging meta-

data if not provided.

• app_id – The unique application identifier. This will usually be a reversed domain name,
e.g. org.beeware.myapp. Will be derived from packaging metadata if not provided.

• app_name – The name of the Python module containing the app. Will be derived from the
module defining the instance of the App class if not provided.

• id – The DOM identifier for the app (optional)

• icon – Identifier for the application’s icon.

• author – The person or organization to be credited as the author of the application. Will be
derived from application metadata if not provided.

• version – The version number of the app. Will be derived from packaging metadata if not
provided.

• home_page – A URL for a home page for the app. Used in auto-generated help menu items.
Will be derived from packaging metadata if not provided.

• description – A brief (one line) description of the app. Will be derived from packaging
metadata if not provided.

• startup – The callback method before starting the app, typically to add the components.
Must be a callable that expects a single argument of App.

• windows – An iterable with objects of Window that will be the app’s secondary windows.

about()

Display the About dialog for the app.

Default implementation shows a platform-appropriate about dialog using app metadata. Override if you
want to display a custom About dialog.

44 Chapter 2. Community

Toga Documentation, Release 0.3.1

add_background_task(handler)
Schedule a task to run in the background.

Schedules a coroutine or a generator to run in the background. Control will be returned to the event loop
during await or yield statements, respectively. Use this to run background tasks without blocking the GUI.
If a regular callable is passed, it will be called as is and will block the GUI until the call returns.

Parameters
handler – A coroutine, generator or callable.

app = None

property app_id

The identifier for the app.

This is a reversed domain name, often used for targeting resources, etc.

Returns
The identifier as a str.

property app_name

The machine-readable, PEP508-compliant name of the app.

Returns
The machine-readable app name, as a str.

property author

The author of the app. This may be an organization name.

Returns
The author of the app, as a str.

property current_window

Return the currently active content window.

property description

A brief description of the app.

Returns
A brief description of the app, as a str.

exit()

Quit the application gracefully.

exit_full_screen()

Exit full screen mode.

property formal_name

The formal name of the app.

Returns
The formal name of the app, as a str.

hide_cursor()

Hide cursor from view.

property home_page

The URL of a web page for the app.

Returns
The URL of the app’s home page, as a str.

2.3. Reference 45

Toga Documentation, Release 0.3.1

property icon

The Icon for the app.

Returns
A toga.Icon instance for the app’s icon.

property id

The DOM identifier for the app.

This id can be used to target CSS directives.

Returns
A DOM identifier for the app.

property is_full_screen

Is the app currently in full screen mode?

main_loop()

Invoke the application to handle user input.

This method typically only returns once the application is exiting.

property main_window

The main window for the app.

Returns
The main Window of the app.

property module_name

The module name for the app.

Returns
The module name for the app, as a str.

property name

The formal name of the app.

Returns
The formal name of the app, as a str.

property on_exit

The handler to invoke before the application exits.

Returns
The function callable that is called on application exit.

set_full_screen(*windows)
Make one or more windows full screen.

Full screen is not the same as “maximized”; full screen mode is when all window borders and other chrome
is no longer visible.

Parameters
windows – The list of windows to go full screen, in order of allocation to screens. If the
number of windows exceeds the number of available displays, those windows will not be
visible. If no windows are specified, the app will exit full screen mode.

show_cursor()

Show cursor.

46 Chapter 2. Community

Toga Documentation, Release 0.3.1

startup()

Create and show the main window for the application.

property version

The version number of the app.

Returns
The version number of the app, as a str.

visit_homepage()

Open the application’s homepage in the default browser.

If the application metadata doesn’t define a homepage, this is a no-op.

property widgets

The widgets collection of the entire app.

Can be used to lookup widgets over the entire app through widget id or manually iterating through it.
Example: app.widgets["my_id"]

Returns
The reference to the widgets collection of the entire app.

MainWindow

Table 6: Availability (Key)

macOS GTK Windows iOS Android Web

A window for displaying components to the user

Usage

A MainWindow is used for desktop applications, where components need to be shown within a window-manager.
Windows can be configured on instantiation and support displaying multiple widgets, toolbars and resizing.

import toga

window = toga.MainWindow('id-window', title='This is a window!')
window.show()

Reference

class toga.app.MainWindow(id=None, title=None, position=(100, 100), size=(640, 480), toolbar=None,
resizeable=True, minimizable=True, factory=None, on_close=None)

property on_close

The handler to invoke before the window is closed.

Returns
The function callable that is called before the window is closed.

2.3. Reference 47

Toga Documentation, Release 0.3.1

Window

Table 7: Availability (Key)

macOS GTK Windows iOS Android Web

A window for displaying components to the user

Usage

The window class is used for desktop applications, where components need to be shown within a window-manager.
Windows can be configured on instantiation and support displaying multiple widgets, toolbars and resizing.

import toga

class ExampleWindow(toga.App):
def startup(self):

self.label = toga.Label('Hello World')
outer_box = toga.Box(

children=[self.label]
)
self.window = toga.Window()
self.window.content = outer_box

self.window.show()

def main():
return ExampleWindow('Window', 'org.beeware.window')

if __name__ == '__main__':
app = main()
app.main_loop()

Reference

class toga.window.Window(id=None, title=None, position=(100, 100), size=(640, 480), toolbar=None,
resizeable=True, closeable=True, minimizable=True, factory=None,
on_close=None)

The top level container of an application.

Parameters
• id (str) – The ID of the window (optional).

• title (str) – Title for the window (optional).

• position (tuple of (int, int)) – Position of the window, as x,y coordinates.

48 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

• size (tuple of (int, int)) – Size of the window, as (width, height) sizes, in pixels.

• toolbar (list of Widget) – A list of widgets to add to a toolbar

• resizeable (bool) – Toggle if the window is resizable by the user, defaults to True.

• closeable (bool) – Toggle if the window is closable by the user, defaults to True.

• minimizable (bool) – Toggle if the window is minimizable by the user, defaults to True.

• on_close – A callback to invoke when the user makes a request to close the window.

property app

Instance of the toga.app.App that this window belongs to.

Returns
The app that it belongs to toga.app.App.

Raises
Exception – If the window already is associated with another app.

close()

confirm_dialog(title, message, on_result=None)
Ask the user to confirm if they wish to proceed with an action.

Presents as a dialog with ‘Cancel’ and ‘OK’ buttons (or whatever labels are appropriate on the current
platform)

Parameters
• title – The title of the dialog window.

• message – A message describing the action to be confirmed.

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns True when the ‘OK’ button was
pressed, False when the ‘CANCEL’ button was pressed.

property content

Content of the window. On setting, the content is added to the same app as the window and to the same
app.

Returns
A Widget

error_dialog(title, message, on_result=None)
Ask the user to acknowledge an error state.

Presents as an error dialog with a ‘OK’ button to close the dialog.

Parameters
• title – The title of the dialog window.

• message – The error message to display.

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns None after the user pressed the ‘OK’
button.

2.3. Reference 49

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

Toga Documentation, Release 0.3.1

property full_screen

hide()

Hide window, if shown.

property id

The DOM identifier for the window. This id can be used to target CSS directives.

Returns
The identifier as a str.

info_dialog(title, message, on_result=None)
Ask the user to acknowledge some information.

Presents as a dialog with a single ‘OK’ button to close the dialog.

Parameters
• title – The title of the dialog window.

• message – The message to display.

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns None after the user pressed the ‘OK’
button.

property on_close

The handler to invoke before the window is closed.

Returns
The function callable that is called before the window is closed.

open_file_dialog(title, initial_directory=None, file_types=None, multiselect=False, on_result=None)
Ask the user to select a file (or files) to open.

Presents the user a system-native “Open file” dialog.

Parameters
• title – The title of the dialog window

• initial_directory – The initial folder in which to open the dialog. If None, use the
default location provided by the operating system (which will often be “last used location”)

• file_types – A list of strings with the allowed file extensions.

• multiselect – If True, the user will be able to select multiple files; if False, the selection
will be restricted to a single file/

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns a list of Path objects if multiselect
is True, or a single Path otherwise. Returns None if the open operation is cancelled by the
user.

property position

Position of the window, as x, y.

Returns
A tuple of (int, int) int the from (x, y).

50 Chapter 2. Community

Toga Documentation, Release 0.3.1

question_dialog(title, message, on_result=None)
Ask the user a yes/no question.

Presents as a dialog with a ‘YES’ and ‘NO’ button.

Parameters
• title – The title of the dialog window.

• message – The question to be answered.

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns True when the ‘YES’ button was
pressed, False when the ‘NO’ button was pressed.

save_file_dialog(title, suggested_filename, file_types=None, on_result=None)
Prompt the user for a location to save a file.

Presents the user a system-native “Save file” dialog.

This opens a native dialog where the user can select a place to save a file. It is possible to suggest a
filename and force the user to use a specific file extension. If no path is returned (e.g. dialog is canceled),
a ValueError is raised.

Parameters
• title – The title of the dialog window

• suggested_filename – A default filename

• file_types – A list of strings with the allowed file extensions.

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns a path object for the selected file
location, or None if the user cancelled the save operation.

select_folder_dialog(title, initial_directory=None, multiselect=False, on_result=None)
Ask the user to select a directory/folder (or folders) to open.

Presents the user a system-native “Open folder” dialog.

Parameters
• title – The title of the dialog window

• initial_directory – The initial folder in which to open the dialog. If None, use the
default location provided by the operating system (which will often be “last used location”)

• multiselect – If True, the user will be able to select multiple files; if False, the selection
will be restricted to a single file/

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. The Dialog object returns a list of Path objects if multiselect
is True, or a single Path otherwise. Returns None if the open operation is cancelled by the
user.

show()

Show window, if hidden.

2.3. Reference 51

Toga Documentation, Release 0.3.1

property size

Size of the window, as width, height.

Returns
A tuple of (int, int) where the first value is the width and the second it the height of the
window.

stack_trace_dialog(title, message, content, retry=False, on_result=None)
Open a dialog that allows to display a large text body, such as a stack trace.

Parameters
• title – The title of the dialog window.

• message – Contextual information about the source of the stack trace.

• content – The stack trace, pre-formatted as a multi-line string.

• retry – A boolean; if True, the user will be given a “Retry” and “Quit” option; if False, a
single option to acknowledge the error will be displayed.

• on_result – A callback that will be invoked when the user selects an option on the dialog.

Returns
An awaitable Dialog object. If retry is enabled, the Dialog object returns True if the user
selected retry, and False otherwise; if retry is not enabled, the dialog object returns None.

property title

Title of the window. If no title is given it defaults to “Toga”.

Returns
The current title of the window as a str.

property toolbar

Toolbar for the window.

Returns
A list of Widget

property visible

Containers

Box

A generic container for other widgets. Used to construct layouts.

Table 8: Availability (Key)

macOS GTK Windows iOS Android Web

52 Chapter 2. Community

Toga Documentation, Release 0.3.1

Usage

An empty Box can be constructed without any children, with children added to the box after construction:

import toga

box = toga.Box()

label1 = toga.Label('Hello')
label2 = toga.Label('World')

box.add(label1)
box.add(label2)

Alternatively, children can be specified at the time the box is constructed:

import toga

label1 = toga.Label('Hello')
label2 = toga.Label('World')

box = toga.Box(children=[label1, label2])

In most apps, a layout is constructed by building a tree of boxes inside boxes, with concrete widgets (such as Label or
Button) forming the leaf nodes of the tree. Style directives can be applied to enforce padding around the outside of
the box, direction of child stacking inside the box, and background color of the box.

Reference

class toga.widgets.box.Box(id=None, style=None, children=None)
Create a new Box container widget.

Inherits from Widget.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• children – An optional list of children for to add to the Box.

property enabled

Is the widget currently enabled? i.e., can the user interact with the widget?

Box widgets cannot be disabled; this property will always return True; any attempt to modify it will be
ignored.

focus()

No-op; Box cannot accept input focus

2.3. Reference 53

Toga Documentation, Release 0.3.1

Option Container

Table 9: Availability (Key)

macOS GTK Windows iOS Android Web

The Option Container widget is a user-selection control for choosing from a pre-configured list of controls, like a tab
view.

Usage

import toga

container = toga.OptionContainer()

table = toga.Table(['Hello', 'World'])
tree = toga.Tree(['Navigate'])

container.add('Table', table)
container.add('Tree', tree)

Reference

class toga.widgets.optioncontainer.OptionContainer(id=None, style=None, content=None,
on_select=None, factory=None)

The option container widget.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – an optional style object. If no style is provided then a new one will be
created for the widget.

• content (list of tuple (str, Widget)) – Each tuple in the list is composed of a title for
the option and the widget tree that is displayed in the option.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

54 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

• style – A style object. If no style is provided, a default style will be applied to the widget.

exception OptionException

add(text=NOT_PROVIDED, widget=NOT_PROVIDED, label=None)
Add a new option to the option container.

Parameters
• text (str) – The text for the option.

• widget (Widget) – The widget to add to the option.

property app

The App to which this widget belongs.

When setting the app for a widget, all children of this widget will be recursively assigned to the same app.

Raises ValueError if the widget is already associated with another app.

property content

The sub layouts of the OptionContainer.

Returns
A OptionList list of OptionItem. Each element of the list is a sub layout of the Option-
Container

Raises
ValueError – If the list is less than two elements long.

property current_tab

insert(index, text, widget)
Insert a new option at the specified index.

Parameters
• index (int) – Index for the option.

• text (str) – The text for the option.

• widget (Widget) – The widget to add to the option.

property on_select

The callback function that is invoked when one of the options is selected.

Returns
(Callable) The callback function.

refresh_sublayouts()

Refresh the layout and appearance of this widget.

remove(index)
Remove the provided widgets as children of this node.

Any nominated child widget that is not a child of this widget will not have any change in parentage.

Raises ValueError if this widget cannot have children.

Parameters
children – The child nodes to remove.

2.3. Reference 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

property window

The window to which this widget belongs.

When setting the window for a widget, all children of this widget will be recursively assigned to the same
window.

Scroll Container

Table 10: Availability (Key)

macOS GTK Windows iOS Android Web

The Scroll Container is similar to the iframe or scrollable div element in HTML, it contains an object with its own
scrollable selection.

Usage

import toga

content = toga.WebView()

container = toga.ScrollContainer(content=content)

Scroll settings

Horizontal or vertical scroll can be set via the initializer or using the property.

import toga

content = toga.WebView()

container = toga.ScrollContainer(content=content, horizontal=False)

container.vertical = False

56 Chapter 2. Community

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.scrollcontainer.ScrollContainer(id=None, style=None, horizontal=True,
vertical=True, on_scroll=None, content=None,
factory=None)

Instantiate a new instance of the scrollable container widget.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• horizontal (bool) – If True enable horizontal scroll bar.

• vertical (bool) – If True enable vertical scroll bar.

• content (Widget) – The content of the scroll window.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

MIN_HEIGHT = 100

MIN_WIDTH = 100

property app

The App to which this widget belongs.

When setting the app for a widget, all children of this widget will be recursively assigned to the same app.

Raises ValueError if the widget is already associated with another app.

property content

Content of the scroll container.

Returns
The content of the widget (Widget).

property horizontal

Shows whether horizontal scrolling is enabled.

Returns
(bool) True if enabled, False if disabled.

property horizontal_position

property on_scroll

refresh_sublayouts()

Refresh the layout and appearance of this widget.

2.3. Reference 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.3.1

property vertical

Shows whether vertical scrolling is enabled.

Returns
(bool) True if enabled, False if disabled.

property vertical_position

property window

The window to which this widget belongs.

When setting the window for a widget, all children of this widget will be recursively assigned to the same
window.

Split Container

Table 11: Availability (Key)

macOS GTK Windows iOS Android Web

The split container is a container with a movable split and the option for 2 or 3 elements.

Usage

import toga

split = toga.SplitContainer()
left_container = toga.Box()
right_container = toga.ScrollContainer()

split.content = [left_container, right_container]

Setting split direction

Split direction is set on instantiation using the direction keyword argument. Direction is vertical by default.

import toga

split = toga.SplitContainer(direction=toga.SplitContainer.HORIZONTAL)
left_container = toga.Box()
right_container = toga.ScrollContainer()

split.content = [left_container, right_container]

58 Chapter 2. Community

Toga Documentation, Release 0.3.1

2.3. Reference 59

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.splitcontainer.SplitContainer(id=None, style=None, direction=VERTICAL,
content=None, factory=None)

A SplitContainer displays two widgets vertically or horizontally next to each other with a movable divider.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• direction – The direction for the container split, either SplitContainer.HORIZONTAL or
SplitContainer.VERTICAL

• content (list of Widget) – The list of components to be split or tuples of components
to be split and adjusting parameters in the following order: widget (Widget): The widget
that will be added. weight (float): Specifying the weighted splits. flex (boolean): Should the
content expand when the widget is resized. (optional)

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

HORIZONTAL = False

VERTICAL = True

property app

The App to which this widget belongs.

When setting the app for a widget, all children of this widget will be recursively assigned to the same app.

Raises ValueError if the widget is already associated with another app.

property content

The sub layouts of the SplitContainer.

Returns
A list of Widget. Each element of the list is a sub layout of the SplitContainer

Raises
ValueError – If the list is less than two elements long.

property direction

The direction of the split.

Returns
True if True for vertical, False for horizontal.

refresh_sublayouts()

Refresh the layout and appearance of this widget.

60 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.3.1

property window

The window to which this widget belongs.

When setting the window for a widget, all children of this widget will be recursively assigned to the same
window.

Resources

Font

Table 12: Availability (Key)

macOS GTK Windows iOS Android Web

The font class is used for abstracting the platforms implementation of fonts.

Reference

class toga.fonts.Font(family, size, style=NORMAL, variant=NORMAL, weight=NORMAL)

bind(factory=None)

measure(text, dpi, tight=False)

static register(family, path, weight=NORMAL, style=NORMAL, variant=NORMAL)
Registers a file-based font with its family name, style, variant and weight. When invalid values for style,
variant or weight are passed, NORMAL will be used.

When a font file includes multiple font weight/style/etc., each variant must be registered separately:

Register a simple regular font
Font.register("Font Awesome 5 Free Solid", "resources/Font Awesome 5 Free-Solid-
→˓900.otf")

Register a regular and bold font, contained in separate font files
Font.register("Roboto", "resources/Roboto-Regular.ttf")
Font.register("Roboto", "resources/Roboto-Bold.ttf", weight=Font.BOLD)

Register a single font file that contains both a regular and bold weight
Font.register("Bahnschrift", "resources/Bahnschrift.ttf")
Font.register("Bahnschrift", "resources/Bahnschrift.ttf", weight=Font.BOLD)

Parameters
• family – The font family name. This is the name that can be referenced in style definitions.

• path – The path to the font file.

• weight – The font weight. Default value is NORMAL.

• style – The font style. Default value is NORMAL.

• variant – The font variant. Default value is NORMAL.

2.3. Reference 61

Toga Documentation, Release 0.3.1

static registered_font_key(family, weight, style, variant)
Creates a key for storing a registered font in the font cache.

If weight, style or variant contain an invalid value, NORMAL is used instead.

Parameters
• family – The font family name. This is the name that can be referenced in style definitions.

• weight – The font weight. Default value is NORMAL.

• style – The font style. Default value is NORMAL.

• variant – The font variant. Default value is NORMAL.

Returns
The font key

Command

Table 13: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

Reference

class toga.command.Command(action, text=NOT_PROVIDED, shortcut=None, tooltip=None, icon=None,
group=None, section=None, order=None, enabled=True, factory=None,
label=None)

Parameters
• action – a function to invoke when the command is activated.

• text – caption for the command.

• shortcut – (optional) a key combination that can be used to invoke the command.

• tooltip – (optional) a short description for what the command will do.

• icon – (optional) a path to an icon resource to decorate the command.

• group – (optional) a Group object describing a collection of similar commands. If no group
is specified, a default “Command” group will be used.

• section – (optional) an integer providing a sub-grouping. If no section is specified, the
command will be allocated to section 0 within the group.

• order – (optional) an integer indicating where a command falls within a section. If a Com-
mand doesn’t have an order, it will be sorted alphabetically by text within its section.

• enabled – whether to enable the command or not.

bind(factory=None)

62 Chapter 2. Community

Toga Documentation, Release 0.3.1

property enabled

property icon

The Icon for the app.

Returns
A toga.Icon instance for the app’s icon.

property key

A unique tuple describing the path to this command

property label

Command text.

DEPRECATED: renamed as text
Returns

The command text as a str

Group

Table 14: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

Reference

class toga.command.Group(text=NOT_PROVIDED, order=None, section=None, parent=None, label=None)

Parameters
• text –

• order –

• parent –

APP = <Group text=* order=0 parent=None>

COMMANDS = <Group text=Commands order=30 parent=None>

EDIT = <Group text=Edit order=10 parent=None>

FILE = <Group text=File order=1 parent=None>

HELP = <Group text=Help order=100 parent=None>

VIEW = <Group text=View order=20 parent=None>

WINDOW = <Group text=Window order=90 parent=None>

is_child_of(parent)

2.3. Reference 63

Toga Documentation, Release 0.3.1

is_parent_of(child)

property key

A unique tuple describing the path to this group

property label

Group text.

DEPRECATED: renamed as text
Returns

The button text as a str

property parent

property path

A list containing the chain of groups that contain this group

property root

Icon

Table 15: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

An icon is a small, square image, used to decorate buttons and menu items.

A Toga icon is a late bound resource - that is, it can be constructed without an implementation. When it is assigned to
an app, command, or other role where an icon is required, it is bound to a factory, at which time the implementation is
created.

The filename specified for an icon is interpreted as a path relative to the module that defines your Toga application. The
only exception to this is a system icon, which is relative to the toga core module itself.

An icon is guaranteed to have an implementation. If you specify a filename that cannot be found, Toga will output a
warning to the console, and load a default icon.

When an icon file is specified, you can optionally omit the extension. If an extension is provided, that literal file will
be loaded. If the platform backend cannot support icons of the format specified, the default icon will be used. If an
extension is not provided, Toga will look for a file with the one of the platform’s allowed extensions.

64 Chapter 2. Community

Toga Documentation, Release 0.3.1

Reference

class toga.icons.Icon(path, system=False)
A representation of an Icon image.

Icon is a deferred resource - it’s impl isn’t available until it the icon is assigned to perform a role in an app. At
the point at which the Icon is used, the Icon is bound to a factory, and the implementation is created.

Parameters
• path – The path to the icon file, relative to the application’s module directory.

• system – Is this a system resource? Set to True if the icon is one of the Toga-provided icons.
Default is False.

DEFAULT_ICON

TOGA_ICON

bind(factory=None)

Image

Table 16: Availability (Key)

macOS GTK Windows iOS Android Web

An image is graphical content of arbitrary size.

A Toga icon is a late bound resource - that is, it can be constructed without an implementation. When it is assigned
to an ImageView, or other role where an Image is required, it is bound to a factory, at which time the implementation
is created.

The path specified for an Image can be:

1. A path relative to the module that defines your Toga application.

2. An absolute filesystem path

3. A URL. The content of the URL will be loaded in the background.

If the path specified does not exist, or cannot be loaded, a FileNotFoundError will be raised.

Usage

Reference

class toga.images.Image(path=None, *, data=None)
A representation of graphical content.

Parameters
• path – Path to the image. Allowed values can be local file (relative or absolute path) or

URL (HTTP or HTTPS). Relative paths will be interpreted relative to the application module
directory.

2.3. Reference 65

Toga Documentation, Release 0.3.1

• data – A bytes object with the contents of an image in a supported format.

bind(factory=None)

save(path)
Save image to given path.

Parameters
path – Path where to save the image.

Widgets

Activity Indicator

A small animated indicator showing activity on a task of indeterminate length, usually rendered as a “spinner” anima-
tion.

Table 17: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

import toga

indicator = toga.ActivityIndicator()

Start the animation
indicator.start()

Stop the animation
indicator.stop()

Notes

• The ActivityIndicator will always take up a fixed amount of physical space in a layout. However, the widget will
not be visible when it is in a “stopped” state.

66 Chapter 2. Community

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.activityindicator.ActivityIndicator(id=None, style=None, running=False)
Create a new ActivityIndicator widget.

Inherits from Widget.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• running – Describes whether the indicator is running at the time it is created.

property enabled

Is the widget currently enabled? i.e., can the user interact with the widget?

ActivityIndicator widgets cannot be disabled; this property will always return True; any attempt to modify
it will be ignored.

focus()

No-op; ActivityIndicator cannot accept input focus

property is_running

Determine if the activity indicator is currently running.

Use start() and stop() to change the running state.

True if this activity indicator is running; False otherwise.

start()

Start the activity indicator.

If the activity indicator is already started, this is a no-op.

stop()

Stop the activity indicator.

If the activity indicator is already stopped, this is a no-op.

Button

A widget that can be pressed or clicked to cause an action in an application.

Table 18: Availability (Key)

macOS GTK Windows iOS Android Web

2.3. Reference 67

Toga Documentation, Release 0.3.1

Usage

A button has a text label. A handler can be associated with button press events.

import toga

def my_callback(button):
handle event
pass

button = toga.Button("Click me", on_press=my_callback)

Notes

• A background color of TRANSPARENT will be treated as a reset of the button to the default system color.

• On macOS, the button text color cannot be set directly; any color style directive will be ignored. The text color
is automatically selected by the platform to contrast with the background color of the button.

Reference

class toga.widgets.button.Button(text, id=None, style=None, on_press=None, enabled=True)
Create a new button widget.

Inherits from Widget.

Parameters
• text – The text to display on the button.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• on_press – A handler that will be invoked when the button is pressed.

• enabled – Is the button enabled (i.e., can it be pressed?). Optional; by default, buttons are
created in an enabled state.

property on_press

The handler to invoke when the button is pressed.

property text

The text displayed on the button.

None, and the Unicode codepoint U+200B (ZERO WIDTH SPACE), will be interpreted and returned as an
empty string. Any other object will be converted to a string using str().

Only one line of text can be displayed. Any content after the first newline will be ignored.

68 Chapter 2. Community

Toga Documentation, Release 0.3.1

Canvas

Table 19: Availability (Key)

macOS GTK Windows iOS Android Web

The canvas is used for creating a blank widget that you can draw on.

Usage

Simple usage to draw a black circle on the screen using the arc drawing object:

import toga
canvas = toga.Canvas(style=Pack(flex=1))
box = toga.Box(children=[canvas])
with canvas.fill() as fill:

fill.arc(50, 50, 15)

More advanced usage for something like a vector drawing app where you would want to modify the parameters of the
drawing objects. Here we draw a black circle and black rectangle. We then change the size of the circle, move the
rectangle, and finally delete the rectangle.

import toga
canvas = toga.Canvas(style=Pack(flex=1))
box = toga.Box(children=[canvas])
with canvas.fill() as fill:

arc1 = fill.arc(x=50, y=50, radius=15)
rect1 = fill.rect(x=50, y=50, width=15, height=15)

arc1.x, arc1.y, arc1.radius = (25, 25, 5)
rect1.x = 75
fill.remove(rect1)

Use of drawing contexts, for example with a platformer game. Here you would want to modify the x/y coordinate of a
drawing context that draws each character on the canvas. First, we create a hero context. Next, we create a black circle
and a black outlined rectangle for the hero’s body. Finally, we move the hero by 10 on the x-axis.

import toga
canvas = toga.Canvas(style=Pack(flex=1))
box = toga.Box(children=[canvas])
with canvas.context() as hero:

with hero.fill() as body:
body.arc(50, 50, 15)

with hero.stroke() as outline:
outline.rect(50, 50, 15, 15)

hero.translate(10, 0)

2.3. Reference 69

Toga Documentation, Release 0.3.1

Reference

Main Interface

class toga.widgets.canvas.Canvas(id=None, style=None, on_resize=None, on_press=None,
on_release=None, on_drag=None, on_alt_press=None,
on_alt_release=None, on_alt_drag=None, factory=None)

Create new canvas.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• on_resize (Callable) – Handler to invoke when the canvas is resized.

• on_press (Callable) – Handler to invoke when the primary (usually the left) button is
pressed.

• on_release (Callable) – Handler to invoke when the primary (usually the left) button is
released.

• on_drag (Callable) – Handler to invoke when cursor is dragged with the primary (usually
the left) button pressed.

• on_alt_press (Callable) – Handler to invoke when the alternate (usually the right) button
pressed.

• on_alt_release (Callable) – Handler to invoke when the alternate (usually the right)
button released

• on_alt_drag (Callable) – Handler to invoke when the cursor is dragged with the alternate
(usually the right) button pressed.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

as_image()

measure_text(text, font, tight=False)

property on_alt_drag

Return the handler to invoke when the mouse is dragged while the alternate (usually the right) mouse button
is pressed.

Returns
The handler that is invoked when the mouse is dragged with the alternate mouse button
pressed.

property on_alt_press

Return the handler to invoke when the alternate (usually the right) mouse button is pressed.

Returns
The handler that is invoked when the alternate mouse button is pressed.

70 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

property on_alt_release

Return the handler to invoke when the alternate (usually the right) mouse button is released.

Returns
The handler that is invoked when the alternate mouse button is released.

property on_drag

Return the handler invoked when the mouse is dragged with the primary (usually the left) mouse button is
pressed.

Returns
The handler that is invoked when the mouse is dragged with the primary button pressed.

property on_press

Return the handler invoked when the primary (usually the left) mouse button is pressed.

Returns
The handler that is invoked when the primary mouse button is pressed.

property on_release

Return the handler invoked when the primary (usually the left) mouse button is released.

Returns
The handler that is invoked when the primary mouse button is released.

property on_resize

The handler to invoke when the canvas is resized.

Returns
The handler that is invoked on canvas resize.

reset_transform()

Constructs and returns a ResetTransform .

Returns
ResetTransform object.

rotate(radians)
Constructs and returns a Rotate.

Parameters
radians (float) – The angle to rotate clockwise in radians.

Returns
Rotate object.

scale(sx, sy)
Constructs and returns a Scale.

Parameters
• sx (float) – scale factor for the X dimension.

• sy (float) – scale factor for the Y dimension.

Returns
Scale object.

translate(tx, ty)
Constructs and returns a Translate.

Parameters

2.3. Reference 71

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

• tx (float) – X value of coordinate.

• ty (float) – Y value of coordinate.

Returns
Translate object.

Lower-Level Classes

class toga.widgets.canvas.Arc(x, y, radius, startangle=0.0, endangle=2 * pi, anticlockwise=False)
A user-created Arc drawing object which adds an arc.

The arc is centered at (x, y) position with radius r starting at startangle and ending at endangle going in
the given direction by anticlockwise (defaulting to clockwise).

Parameters
• x – The x coordinate of the arc’s center.

• y – The y coordinate of the arc’s center.

• radius – The arc’s radius.

• startangle – The angle (in radians) at which the arc starts, measured clockwise from the
positive x axis, default 0.0.

• endangle – The angle (in radians) at which the arc ends, measured clockwise from the
positive x axis, default 2*pi.

• anticlockwise – If true, causes the arc to be drawn counter-clockwise between the two
angles instead of clockwise, default false.

class toga.widgets.canvas.BezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)
A user-created BezierCurveTo drawing object which adds a Bézier curve.

It requires three points. The first two points are control points and the third one is the end point. The starting
point is the last point in the current path, which can be changed using move_to() before creating the Bézier curve.

Parameters
• cp1x (float) – x coordinate for the first control point.

• cp1y (float) – y coordinate for first control point.

• cp2x (float) – x coordinate for the second control point.

• cp2y (float) – y coordinate for the second control point.

• x (float) – x coordinate for the end point.

• y (float) – y coordinate for the end point.

class toga.widgets.canvas.ClosedPath(x, y)
A user-created ClosedPath drawing object for a closed path context.

Creates a new path and then closes it.

Parameters
• x (float) – The x axis of the beginning point.

• y (float) – The y axis of the beginning point.

72 Chapter 2. Community

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

class toga.widgets.canvas.Context(*args, **kwargs)
The user-created Context drawing object to populate a drawing with visual context.

The top left corner of the canvas must be painted at the origin of the context and is sized using the rehint() method.

arc(x, y, radius, startangle=0.0, endangle=2 * pi, anticlockwise=False)
Constructs and returns a Arc.

Parameters
• x – The x coordinate of the arc’s center.

• y – The y coordinate of the arc’s center.

• radius – The arc’s radius.

• startangle – The angle (in radians) at which the arc starts, measured clockwise from the
positive x axis, default 0.0.

• endangle – The angle (in radians) at which the arc ends, measured clockwise from the
positive x axis, default 2*pi.

• anticlockwise – If true, causes the arc to be drawn counter-clockwise between the two
angles instead of clockwise, default false.

Returns
Arc object.

bezier_curve_to(cp1x, cp1y, cp2x, cp2y, x, y)
Constructs and returns a BezierCurveTo.

Parameters
• cp1x (float) – x coordinate for the first control point.

• cp1y (float) – y coordinate for first control point.

• cp2x (float) – x coordinate for the second control point.

• cp2y (float) – y coordinate for the second control point.

• x (float) – x coordinate for the end point.

• y (float) – y coordinate for the end point.

Returns
BezierCurveTo object.

property canvas

The canvas property of the current context.

Returns
The canvas node. Returns self if this node is the canvas node.

clear()

Remove all drawing objects.

closed_path(x, y)
Calls move_to(x,y) and then constructs and yields a ClosedPath .

Parameters
• x (float) – The x axis of the beginning point.

• y (float) – The y axis of the beginning point.

2.3. Reference 73

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

Yields
ClosedPath object.

context()

Constructs and returns a Context.

Makes use of an existing context. The top left corner of the canvas must be painted at the origin of the
context and is sized using the rehint() method.

Yields
Context object.

ellipse(x, y, radiusx, radiusy, rotation=0.0, startangle=0.0, endangle=2 * pi, anticlockwise=False)
Constructs and returns a Ellipse.

Parameters
• x – The x axis of the coordinate for the ellipse’s center.

• y – The y axis of the coordinate for the ellipse’s center.

• radiusx – The ellipse’s major-axis radius.

• radiusy – The ellipse’s minor-axis radius.

• rotation – The rotation for this ellipse, expressed in radians, default 0.0.

• startangle – The starting point in radians, measured from the x axis, from which it will
be drawn, default 0.0.

• endangle – The end ellipse’s angle in radians to which it will e drawn, default 2*pi.

• anticlockwise – If true, draws the ellipse anticlockwise (counter-clockwise) instead of
clockwise, default false.

Returns
Ellipse object.

fill(color=BLACK, fill_rule=FillRule.NONZERO, preserve=False)
Constructs and yields a Fill.

A drawing operator that fills the current path according to the current fill rule, (each sub-path is implicitly
closed before being filled).

Parameters
• fill_rule (str, Optional) – ‘nonzero’ is the non-zero winding rule and ‘evenodd’ is

the even-odd winding rule.

• preserve (bool, Optional) – Preserves the path within the Context.

• color (str, Optional) – color value in any valid color format, default to black.

Yields
Fill object.

line_to(x, y)
Constructs and returns a LineTo.

Parameters
• x (float) – The x axis of the coordinate for the end of the line.

• y (float) – The y axis of the coordinate for the end of the line.

74 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

Returns
LineTo object.

move_to(x, y)
Constructs and returns a MoveTo.

Parameters
• x (float) – The x axis of the point.

• y (float) – The y axis of the point.

Returns
MoveTo object.

new_path()

Constructs and returns a NewPath .

Returns
class: NewPath object.

quadratic_curve_to(cpx, cpy, x, y)
Constructs and returns a QuadraticCurveTo.

Parameters
• cpx (float) – The x axis of the coordinate for the control point.

• cpy (float) – The y axis of the coordinate for the control point.

• x (float) – The x axis of the coordinate for the end point.

• y (float) – The y axis of the coordinate for the end point.

Returns
QuadraticCurveTo object.

rect(x, y, width, height)
Constructs and returns a Rect.

Parameters
• x (float) – x coordinate for the rectangle starting point.

• y (float) – y coordinate for the rectangle starting point.

• width (float) – The rectangle’s width.

• height (float) – The rectangle’s width.

Returns
Rect object.

redraw()

Force a redraw of the Canvas.

The Canvas will be automatically redrawn after adding or remove a drawing object. If you modify a drawing
object, this method is used to force a redraw.

remove(drawing_object)
Remove a drawing object.

Parameters
((drawing_object) – obj:’Drawing Object’): The drawing object to remove

2.3. Reference 75

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

stroke(color=BLACK, line_width=2.0, line_dash=None)
Constructs and yields a Stroke.

Parameters
• color (str, Optional) – color value in any valid color format, default to black.

• line_width (float, Optional) – stroke line width, default is 2.0.

• line_dash (array of floats, Optional) – stroke line dash pattern, default is None.

Yields
Stroke object.

write_text(text, x=0, y=0, font=None)
Constructs and returns a WriteText.

Writes a given text at the given (x,y) position. If no font is provided, then it will use the font assigned to
the Canvas Widget, if it exists, or use the default font if there is no font assigned.

Parameters
• text (str) – The text to fill.

• x (float, Optional) – The x coordinate of the text. Default to 0.

• y (float, Optional) – The y coordinate of the text. Default to 0.

• font (Font, Optional) – The font to write with.

Returns
WriteText object.

class toga.widgets.canvas.Ellipse(x, y, radiusx, radiusy, rotation=0.0, startangle=0.0, endangle=2 * pi,
anticlockwise=False)

A user-created Ellipse drawing object which adds an ellipse.

The ellipse is centered at (x, y) position with the radii radiusx and radiusy starting at startangle and
ending at endangle going in the given direction by anticlockwise (defaulting to clockwise).

Parameters
• x – The x axis of the coordinate for the ellipse’s center.

• y – The y axis of the coordinate for the ellipse’s center.

• radiusx – The ellipse’s major-axis radius.

• radiusy – The ellipse’s minor-axis radius.

• rotation – The rotation for this ellipse, expressed in radians, default 0.0.

• startangle – The starting point in radians, measured from the x axis, from which it will
be drawn, default 0.0.

• endangle – The end ellipse’s angle in radians to which it will be drawn, default 2*pi.

• anticlockwise – If true, draws the ellipse anticlockwise (counter-clockwise) instead of
clockwise, default false.

class toga.widgets.canvas.Fill(color=BLACK, fill_rule=FillRule.NONZERO, preserve=False)
A user-created Fill drawing object for a fill context.

A drawing object that fills the current path according to the current fill rule, (each sub-path is implicitly closed
before being filled).

76 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

Parameters
• color (str, Optional) – Color value in any valid color format, default to black.

• fill_rule (str, Optional) – ‘nonzero’ if the non-zero winding rule and ‘evenodd’ if
the even-odd winding rule.

• preserve (bool, Optional) – Preserves the path within the Context.

property color

property fill_rule

class toga.widgets.canvas.FillRule(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

EVENODD = 0

NONZERO = 1

class toga.widgets.canvas.LineTo(x, y)
A user-created LineTo drawing object which draws a line to a point.

Connects the last point in the sub-path to the (x, y) coordinates with a straight line (but does not actually draw
it).

Parameters
• x (float) – The x axis of the coordinate for the end of the line.

• y (float) – The y axis of the coordinate for the end of the line.

class toga.widgets.canvas.MoveTo(x, y)
A user-created MoveTo drawing object which moves the start of the next operation to a point.

Moves the starting point of a new sub-path to the (x, y) coordinates.

Parameters
• x (float) – The x axis of the point.

• y (float) – The y axis of the point.

class toga.widgets.canvas.NewPath

A user-created NewPath to add a new path.

class toga.widgets.canvas.QuadraticCurveTo(cpx, cpy, x, y)
A user-created QuadraticCurveTo drawing object which adds a quadratic curve.

It requires two points. The first point is a control point and the second one is the end point. The starting point
is the last point in the current path, which can be changed using moveTo() before creating the quadratic Bézier
curve.

Parameters
• cpx – The x axis of the coordinate for the control point.

• cpy – The y axis of the coordinate for the control point.

• x – The x axis of the coordinate for the end point.

• y – he y axis of the coordinate for the end point.

2.3. Reference 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

class toga.widgets.canvas.Rect(x, y, width, height)
A user-created Rect drawing object which adds a rectangle.

The rectangle is at position (x, y) with a size that is determined by width and height. Those four points are
connected by straight lines and the sub-path is marked as closed, so that you can fill or stroke this rectangle.

Parameters
• x (float) – x coordinate for the rectangle starting point.

• y (float) – y coordinate for the rectangle starting point.

• width (float) – The rectangle’s width.

• height (float) – The rectangle’s width.

class toga.widgets.canvas.ResetTransform

A user-created ResetTransform to reset the canvas.

Resets the canvas by setting it equal to the canvas with no transformations.

class toga.widgets.canvas.Rotate(radians)
A user-created Rotate to add canvas rotation.

Modifies the canvas by rotating the canvas by angle radians. The rotation center point is always the canvas origin
which is in the upper left of the canvas. To change the center point, move the canvas by using the translate()
method.

Parameters
radians (float) – The angle to rotate clockwise in radians.

class toga.widgets.canvas.Scale(sx, sy)
A user-created Scale to add canvas scaling.

Modifies the canvas by scaling the X and Y canvas axes by sx and sy.

Parameters
• sx (float) – scale factor for the X dimension.

• sy (float) – scale factor for the Y dimension.

class toga.widgets.canvas.Stroke(color=BLACK, line_width=2.0, line_dash=None)
A user-created Stroke drawing object for a stroke context.

A drawing operator that strokes the current path according to the current line style settings.

Parameters
• color (str, Optional) – Color value in any valid color format, default to black.

• line_width (float, Optional) – Stroke line width, default is 2.0.

• line_dash (array of floats, Optional) – Stroke line dash pattern, default is None.

property color

class toga.widgets.canvas.Translate(tx, ty)
A user-created Translate to translate the canvas.

Modifies the canvas by translating the canvas origin by (tx, ty).

Parameters
• tx (float) – X value of coordinate.

78 Chapter 2. Community

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toga Documentation, Release 0.3.1

• ty (float) – Y value of coordinate.

class toga.widgets.canvas.WriteText(text, x, y, font)
A user-created WriteText to add text.

Writes a given text at the given (x,y) position. If no font is provided, then it will use the font assigned to the
Canvas Widget, if it exists, or use the default font if there is no font assigned.

Parameters
• text (str) – The text to fill.

• x (float, Optional) – The x coordinate of the text. Default to 0.

• y (float, Optional) – The y coordinate of the text. Default to 0.

• font (toga.fonts.Font, Optional) – The font to write with.

DetailedList

Table 20: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

Reference

class toga.widgets.detailedlist.DetailedList(id=None, data=None, on_delete=None,
on_refresh=None, on_select=None, style=None,
factory=None)

A widget to hold data in a list form. Rows are selectable and can be deleted. An updated function can be invoked
by pulling the list down.

Parameters
• id (str) – An identifier for this widget.

• data (list of dict) – List of dictionaries with required ‘icon’, ‘title’, and ‘subtitle’ keys as well
as optional custom keys to store additional info like ‘pk’ for a database primary key (think
Django ORM)

• on_delete (Callable) – Function that is invoked on row deletion.

• on_refresh (Callable) – Function that is invoked on user initialized refresh.

• on_select (Callable) – Function that is invoked on row selection.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

2.3. Reference 79

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

Examples

>>> import toga
>>> def selection_handler(widget, row):
>>> print('Row {} of widget {} was selected.'.format(row, widget))
>>>
>>> dlist = toga.DetailedList(
... data=[
... {
... 'icon': '',
... 'title': 'John Doe',
... 'subtitle': 'Employee of the Month',
... 'pk': 100
... }
...],
... on_select=selection_handler
...)

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

MIN_HEIGHT = 100

MIN_WIDTH = 100

property data

The data source of the widget. It accepts data in the form of list of dict or ListSource

Returns
Returns a (ListSource).

property on_delete

The function invoked on row deletion. The delete handler must accept two arguments. The first is a ref. to
the widget and the second the row that is about to be deleted.

Examples

>>> def delete_handler(widget, row):
>>> print('row ', row, 'is going to be deleted from widget', widget)

Returns
The function that is invoked when deleting a row.

property on_refresh

Returns: The function to be invoked on user initialized refresh.

property on_select

The handler function must accept two arguments, widget and row.

80 Chapter 2. Community

Toga Documentation, Release 0.3.1

Returns
The function to be invoked on selecting a row.

scroll_to_bottom()

Scroll the view so that the bottom of the list (last row) is visible.

scroll_to_row(row)
Scroll the view so that the specified row index is visible.

Parameters
row – The index of the row to make visible. Negative values refer to the nth last row (-1 is
the last row, -2 second last, and so on)

scroll_to_top()

Scroll the view so that the top of the list (first row) is visible.

property selection

The current selection.

A value of None indicates no selection.

Divider

A separator used to visually distinguish two sections of content in a layout.

Table 21: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

To separate two labels stacked vertically with a horizontal line:

import toga
from toga.style import Pack, COLUMN

box = toga.Box(
children=[

toga.Label("First section"),
toga.Divider(),
toga.Label("Second section"),

],
style=Pack(direction=COLUMN, flex=1, padding=10)

)

The direction (horizontal or vertical) can be given as an argument. If not specified, it will default to horizontal.

2.3. Reference 81

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.divider.Divider(id=None, style=None, direction=HORIZONTAL)
Create a new divider line.

Inherits from Widget.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• direction – The direction in which the divider will be drawn. Defaults to Divider.
HORIZONTAL

HORIZONTAL = 0

VERTICAL = 1

property direction

The direction in which the visual separator will be drawn.

Returns
Divider.HORIZONTAL or Divider.VERTICAL

property enabled

Is the widget currently enabled? i.e., can the user interact with the widget?

Divider widgets cannot be disabled; this property will always return True; any attempt to modify it will be
ignored.

focus()

No-op; Divider cannot accept input focus

Image View

Table 22: Availability (Key)

macOS GTK Windows iOS Android Web

The Image View is a container for an image to be rendered on the display

Usage

import toga

view = toga.ImageView(id='view1', image=my_image)

82 Chapter 2. Community

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.imageview.ImageView(image=None, id=None, style=None, factory=None)

Parameters
• image (Image) – The image to display.

• id (str) – An identifier for this widget.

• style (Style) –

Todo:
• Finish implementation.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

property image

Label

A text label for annotating forms or interfaces.

Table 23: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

import toga

label = toga.Label("Hello world")

2.3. Reference 83

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

Notes

• Winforms does not support an alignment value of JUSTIFIED. If this alignment value is used, the label will
default to left alignment.

Reference

class toga.widgets.label.Label(text, id=None, style=None)
Create a new text label.

Inherits from Widget.

Parameters
• text – Text of the label.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

focus()

No-op; Label cannot accept input focus

property text

The text displayed by the label.

None, and the Unicode codepoint U+200B (ZERO WIDTH SPACE), will be interpreted and returned as an
empty string. Any other object will be converted to a string using str().

Multi-line text input

Table 24: Availability (Key)

macOS GTK Windows iOS Android Web

The Multi-line text input is similar to the text input but designed for larger inputs, similar to the <textarea> field of
HTML.

Usage

import toga

textbox = toga.MultilineTextInput(id='view1')

84 Chapter 2. Community

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.multilinetextinput.MultilineTextInput(id=None, style=None, factory=None,
value=None, readonly=False,
placeholder=None, on_change=None,
initial=None)

A multi-line text input widget.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• value (str) – The initial text of the widget.

• readonly (bool) – Whether a user can write into the text input, defaults to False.

• placeholder (str) – The placeholder text for the widget.

• on_change (callable) – The handler to invoke when the text changes.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

MIN_HEIGHT = 100

MIN_WIDTH = 100

clear()

Clears the text from the widget.

property on_change

The handler to invoke when the value changes.

Returns
The function callable that is called on a content change.

property placeholder

The placeholder text.

Returns
The placeholder text as a str`.

property readonly

Whether a user can write into the text input.

Returns
True if the user can only read, False if the user can read and write the text.

scroll_to_bottom()

Scroll the view to make the bottom of the text field visible.

2.3. Reference 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

scroll_to_top()

Scroll the view to make the top of the text field visible.

property value

The value of the multi line text input field.

Returns
The text of the Widget as a str.

Number Input

Table 25: Availability (Key)

macOS GTK Windows iOS Android Web

The Number input is a text input box that is limited to numeric input.

Usage

import toga

textbox = toga.NumberInput(min_value=1, max_value=10)

Reference

class toga.widgets.numberinput.NumberInput(id=None, style=None, factory=None, step=1,
min_value=None, max_value=None, value=None,
readonly=False, on_change=None, default=None)

A NumberInput widget specifies a fixed range of possible numbers. The user has two buttons to incre-
ment/decrement the value by a step size. Step, min and max can be integers, floats, or Decimals; They can
also be specified as strings, which will be converted to Decimals internally. The value of the widget will be
evaluated as a Decimal.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – an optional style object. If no style is provided then a new one will be
created for the widget.

• step (number) – Step size of the adjustment buttons.

86 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

• min_value (number) – The minimum bound for the widget’s value.

• max_value (number) – The maximum bound for the widget’s value.

• value (number) – Initial value for the widget

• readonly (bool) – Whether a user can write/change the number input, defaults to False.

• on_change (callable) – The handler to invoke when the value changes.

• **ex –

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

property max_value

The maximum bound for the widget’s value.

Returns
The maximum bound for the widget’s value. If the maximum bound is None, there is no
maximum bound.

property min_value

The minimum bound for the widget’s value.

Returns
The minimum bound for the widget’s value. If the minimum bound is None, there is no
minimum bound.

property on_change

The handler to invoke when the value changes.

Returns
The function callable that is called on a content change.

property readonly

Whether a user can write/change the number input.

Returns
True if only read is possible. False if read and write is possible.

property step

The step value for the widget.

Returns
The current step value for the widget.

property value

Current value contained by the widget.

Returns
The current value(int) of the widget. Returns None if the field has no value set.

2.3. Reference 87

https://docs.python.org/3/library/functions.html#bool

Toga Documentation, Release 0.3.1

PasswordInput

Table 26: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

Reference

class toga.widgets.passwordinput.PasswordInput(id=None, style=None, factory=None, value=None,
placeholder=None, readonly=False, on_change=None,
on_gain_focus=None, on_lose_focus=None,
validators=None, initial=None)

This widget behaves like a TextInput, but obscures the text that is entered by the user.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

Progress Bar

Displays task progress on a horizontal graphical bar. The task being monitored can be of known or indeterminate
length.

Table 27: Availability (Key)

macOS GTK Windows iOS Android Web

88 Chapter 2. Community

Toga Documentation, Release 0.3.1

Usage

If a progress bar has a max value, it is a determinate progress bar. The value of the progress bar can be altered over
time, indicating progress on a task. The visual indicator of the progress bar will be filled indicating the proportion of
value relative to max. max can be any positive numerical value.

import toga

progress = toga.ProgressBar(max=100, value=1)

Start progress animation
progress.start()

Update progress to 10%
progress.value = 10

Stop progress animation
progress.stop()

If a progress bar does not have a max value (i.e., max == None), it is an indeterminate progress bar. Any change to
the value of an indeterminate progress bar will be ignored. When started, an indeterminate progress bar animates as a
throbbing or “ping pong” animation.

import toga

progress = toga.ProgressBar(max=None)

Start progress animation
progress.start()

Stop progress animation
progress.stop()

Notes

• The visual appearance of progress bars varies from platform to platform. Toga will try to provide a visual
distinction between running and not-running determinate progress bars, but this cannot be guaranteed.

Reference

class toga.widgets.progressbar.ProgressBar(id=None, style=None, max=1.0, value=0.0, running=False)
Create a new Progress Bar widget.

Inherits from Widget.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• max – The value that represents completion of the task. Must be > 0.0; defaults to 1.0. A
value of None indicates that the task length is indeterminate.

2.3. Reference 89

Toga Documentation, Release 0.3.1

• value – The current progress against the maximum value. Must be between 0.0 and max;
any value outside this range will be clipped. Defaults to 0.0.

• running – Describes whether the indicator is running at the time it is created. Default is
False.

property enabled

Is the widget currently enabled? i.e., can the user interact with the widget?

ProgressBar widgets cannot be disabled; this property will always return True; any attempt to modify it
will be ignored.

property is_determinate

Describe whether the progress bar has a known or indeterminate maximum.

True if the progress bar has determinate length; False otherwise.

property is_running

Describe if the activity indicator is currently running.

Use start() and stop() to change the running state.

True if this activity indicator is running; False otherwise.

property max

The value indicating completion of the task being monitored.

Must be a number > 0, or None for a task of indeterminate length.

start()

Start the progress bar.

If the progress bar is already started, this is a no-op.

stop()

Stop the progress bar.

If the progress bar is already stopped, this is a no-op.

property value

The current value of the progress indicator.

If the progress bar is determinate, the value must be between 0 and max. Any value outside this range will
be clipped.

If the progress bar is indeterminate, changes in value will be ignored, and the current value will be returned
as None.

Selection

Table 28: Availability (Key)

macOS GTK Windows iOS Android Web

The Selection widget is a simple control for allowing the user to choose between a list of string options.

90 Chapter 2. Community

Toga Documentation, Release 0.3.1

Usage

import toga

container = toga.Selection(items=['bob', 'jim', 'lilly'])

Reference

class toga.widgets.selection.Selection(id=None, style=None, items=None, on_select=None,
enabled=True, factory=None)

The Selection widget lets you pick from a defined selection of options.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• items (list of str) – The items for the selection.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

property items

The list of items.

Returns
The list of str of all selectable items.

property on_select

The callable function for when a node on the Tree is selected.

Return type
callable

property value

The value of the currently selected item.

Returns
The selected item as a str.

2.3. Reference 91

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

Slider

A widget for selecting a value within a range. The range is shown as a horizontal line, and the selected value is shown
as a draggable marker.

Table 29: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

A slider can either be continuous (allowing any value within the range), or discrete (allowing a fixed number of equally-
spaced values). For example:

import toga

def my_callback(slider):
print(slider.value)

Continuous slider, with an event handler.
toga.Slider(range=(-5, 10), value=7, on_change=my_callback)

Discrete slider, accepting the values [0, 1.5, 3, 4.5, 6, 7.5].
toga.Slider(range=(0, 7.5), tick_count=6)

Reference

class toga.widgets.slider.Slider(id=None, style=None, value=None, range=(0, 1), tick_count=None,
on_change=None, on_press=None, on_release=None, enabled=True)

Create a new slider widget.

Inherits from Widget.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• value – Initial value of the slider. Defaults to the mid-point of the range.

• range – Initial range range of the slider. Defaults to (0, 1).

• tick_count – Initial tick_count for the slider. If None, the slider will be continuous.

• on_change – Initial on_change handler.

• on_press – Initial on_press handler.

• on_release – Initial on_release handler.

92 Chapter 2. Community

Toga Documentation, Release 0.3.1

• enabled – Whether the user can interact with the widget.

property max: float

Maximum allowed value.

This property is read-only, and depends on the value of range.

property min: float

Minimum allowed value.

This property is read-only, and depends on the value of range.

property on_change: Callable

Handler to invoke when the value of the slider is changed, either by the user or programmatically.

Setting the widget to its existing value will not call the handler.

property on_press: Callable

Handler to invoke when the user presses the slider before changing it.

property on_release: Callable

Handler to invoke when the user releases the slider after changing it.

property range: Tuple[float]

Range of allowed values, in the form (min, max).

If a range is set which doesn’t include the current value, the value will be changed to the min or the max,
whichever is closest.

Raises
ValueError – If the min is not strictly less than the max.

property tick_count: int | None

Number of tick marks to display on the slider.

• If this is None, the slider will be continuous.

• If this is an int, the slider will be discrete, and will have the given number of possible values, equally
spaced within the range.

Setting this property to an int will round the current value to the nearest tick.

Raises
ValueError – If set to a count which is not at least 2 (for the min and max).

Note: On iOS, tick marks are not currently displayed, but discrete mode will otherwise work correctly.

property tick_step: float | None

Step between adjacent ticks.

• If the slider is continuous, this property returns None

• If the slider is discrete, it returns the difference in value between adjacent ticks.

This property is read-only, and depends on the values of tick_count and range.

property tick_value: int | None

Value of the slider, measured in ticks.

• If the slider is continuous, this property returns None.

2.3. Reference 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Toga Documentation, Release 0.3.1

• If the slider is discrete, it returns an integer between 1 (representing min) and tick_count (repre-
senting max).

Raises
ValueError – If set to anything inconsistent with the rules above.

property value: float

Current value.

If the slider is discrete, setting the value will round it to the nearest tick.

Raises
ValueError – If set to a value which is outside of the range.

Switch

A clickable button with two stable states: True (on, checked); and False (off, unchecked). The button has a text label.

Table 30: Availability (Key)

macOS GTK Windows iOS Android Web

Usage

import toga

switch = toga.Switch()

What is the current state of the switch?
print(f"The switch is {switch.value}")

Notes

• The button and the label are considered a single widget for layout purposes.

• The visual appearance of a Switch is not guaranteed. On some platforms, it will render as a checkbox. On others,
it will render as a physical “switch” whose position (and color) indicates if the switch is active. When rendered
as a checkbox, the label will appear to the right of the checkbox. When rendered as a switch, the label will be
left-aligned, and the switch will be right-aligned.

• On macOS, the text color of the label cannot be set directly; any color style directive will be ignored.

94 Chapter 2. Community

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.3.1

Reference

class toga.widgets.switch.Switch(text, id=None, style=None, on_change=None, value=False,
enabled=True)

Create a new Switch widget.

Inherits from Widget.

Parameters
• text – The text to display beside the switch.

• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

• on_change – A handler that will be invoked when the switch changes value.

• enabled – Is the switch enabled (i.e., can it be pressed?). Optional; by default, switches are
created in an enabled state.

property on_change

The handler to invoke when the value of the switch changes.

property text

The text label for the Switch.

None, and the Unicode codepoint U+200B (ZERO WIDTH SPACE), will be interpreted and returned as an
empty string. Any other object will be converted to a string using str().

Only one line of text can be displayed. Any content after the first newline will be ignored.

toggle()

Reverse the current value of the switch.

property value

The current state of the switch, as a Boolean.

Any non-Boolean value will be converted to a Boolean.

Table

Table 31: Availability (Key)

macOS GTK Windows iOS Android Web

The table widget is a widget for displaying tabular data. It can be instantiated with the list of headings and then data
rows can be added.

2.3. Reference 95

Toga Documentation, Release 0.3.1

Usage

import toga

table = toga.Table(['Heading 1', 'Heading 2'])

Append to end of table
table.data.append('Value 1', 'Value 2')

Insert to row 2
table.data.insert(2, 'Value 1', 'Value 2')

Reference

class toga.widgets.table.Table(headings, id=None, style=None, data=None, accessors=None,
multiple_select=False, on_select=None, on_double_click=None,
missing_value=None, factory=None)

A Table Widget allows the display of data in the form of columns and rows.

Parameters
• headings (list of str) – The list of headings for the table.

• id (str) – An identifier for this widget.

• data (list of tuple) – The data to be displayed on the table.

• accessors – A list of methods, same length as headings, that describes how to extract the
data value for each column from the row. (Optional)

• style (Style) – An optional style object. If no style is provided` then a new one will be
created for the widget.

• on_select (callable) – A function to be invoked on selecting a row of the table.

• on_double_click (callable) – A function to be invoked on double clicking a row of the
table.

• missing_value (str or None) – value for replacing a missing value in the data source.
(Default: None). When ‘None’, a warning message will be shown.

96 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str

Toga Documentation, Release 0.3.1

Examples

>>> headings = ['Head 1', 'Head 2', 'Head 3']
>>> data = []
>>> table = Table(headings, data=data)

Data can be in several forms. A list of dictionaries, where the keys match the heading names:

>>> data = [{'head_1': 'value 1', 'head_2': 'value 2', 'head_3': 'value3'}),
>>> {'head_1': 'value 1', 'head_2': 'value 2', 'head_3': 'value3'}]

A list of lists. These will be mapped to the headings in order:

>>> data = [('value 1', 'value 2', 'value3'),
>>> ('value 1', 'value 2', 'value3')]

A list of values. This is only accepted if there is a single heading.

>>> data = ['item 1', 'item 2', 'item 3']

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

add_column(heading, accessor=None)
Add a new column to the table.

Parameters
• heading (string) – title of the column

• accessor – accessor of this new column

property data

The data source of the widget. It accepts table data in the form of list, tuple, or ListSource

Returns
Returns a (ListSource).

property missing_value

property multiple_select

Does the table allow multiple rows to be selected?

property on_double_click

The callback function that is invoked when a row of the table is double clicked. The provided callback
function has to accept two arguments table (Table) and row (Row or None).

The value of a column of row can be accessed with row.accessor_name

Returns
(callable) The callback function.

2.3. Reference 97

Toga Documentation, Release 0.3.1

property on_select

The callback function that is invoked when a row of the table is selected. The provided callback function
has to accept two arguments table (Table) and row (Row or None).

The value of a column of row can be accessed with row.accessor_name

Returns
(callable) The callback function.

remove_column(column)
Remove a table column.

Parameters
column (int) – accessor or position (>0)

scroll_to_bottom()

Scroll the view so that the bottom of the list (last row) is visible.

scroll_to_row(row)
Scroll the view so that the specified row index is visible.

Parameters
row – The index of the row to make visible. Negative values refer to the nth last row (-1 is
the last row, -2 second last, and so on)

scroll_to_top()

Scroll the view so that the top of the list (first row) is visible.

property selection

The current selection of the table.

A value of None indicates no selection. If the table allows multiple selection, returns a list of selected data
nodes. Otherwise, returns a single data node.

The value of a column of the selection can be accessed with selection.accessor_name (for single selection)
and with selection[x].accessor_name (for multiple selection)

Text Input

Table 32: Availability (Key)

macOS GTK Windows iOS Android Web

The text input widget is a simple input field for user entry of text data.

98 Chapter 2. Community

Toga Documentation, Release 0.3.1

Usage

import toga

input = toga.TextInput(placeholder='enter name here')

Reference

class toga.widgets.textinput.TextInput(id=None, style=None, factory=None, value=None,
placeholder=None, readonly=False, on_change=None,
on_gain_focus=None, on_lose_focus=None, validators=None,
initial=None)

A widget get user input.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• value (str) – The initial text for the input.

• placeholder (str) – If no input is present this text is shown.

• readonly (bool) – Whether a user can write into the text input, defaults to False.

• on_change (callable) – Method to be called when text is changed in text box

• validators (list) – list of validators to run on the value of the text box. Should return
None is value is valid and an error message if not.

• on_change – The handler to invoke when the text changes.

• on_gain_focus (callable) – Function to execute when get focused.

• on_lose_focus (callable) – Function to execute when lose focus.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

MIN_WIDTH = 100

clear()

Clears the text of the widget.

property is_valid

property on_change

The handler to invoke when the value changes.

Returns
The function callable that is called on a content change.

2.3. Reference 99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable

Toga Documentation, Release 0.3.1

property on_gain_focus

The handler to invoke when the widget get focus.

Returns
The function callable that is called on widget focus gain.

property on_lose_focus

The handler to invoke when the widget lose focus.

Returns
The function callable that is called on widget focus loss.

property placeholder

The placeholder text.

Returns
The placeholder text as a str.

property readonly

Whether a user can write into the text input.

Returns
True if only read is possible. False if read and write is possible.

validate()

property validators

property value

The value of the text input field.

Returns
The current text of the widget as a str.

Tree

Table 33: Availability (Key)

macOS GTK Windows iOS Android Web

The tree widget is still under development.

Usage

import toga

tree = toga.Tree(['Navigate'])

tree.insert(None, None, 'root1')

root2 = tree.insert(None, None, 'root2')

(continues on next page)

100 Chapter 2. Community

Toga Documentation, Release 0.3.1

(continued from previous page)

tree.insert(root2, None, 'root2.1')
root2_2 = tree.insert(root2, None, 'root2.2')

tree.insert(root2_2, None, 'root2.2.1')
tree.insert(root2_2, None, 'root2.2.2')
tree.insert(root2_2, None, 'root2.2.3')

Reference

class toga.widgets.tree.Tree(headings, id=None, style=None, data=None, accessors=None,
multiple_select=False, on_select=None, on_double_click=None,
factory=None)

Tree Widget.

Parameters
• headings – The list of headings for the interface.

• id – An identifier for this widget.

• style – An optional style object. If no style is provided then a new one will be created for
the widget.

• data – The data to display in the widget. Can be an instance of TreeSource, a list, dict
or tuple with data to display in the tree widget, or a class instance which implements the
interface of TreeSource. Entries can be:

– any Python object value with a string representation. This string will be shown in the
widget. If value has an attribute icon, instance of (Icon), the icon will be shown in
front of the text.

– a tuple (icon, value) where again the string representation of value will be used as
text.

• accessors – Optional; a list of attributes to access the value in the columns. If not given,
the headings will be taken.

• multiple_select – Boolean; if True, allows for the selection of multiple rows. Defaults
to False.

• on_select – A handler to be invoked when the user selects one or multiple rows.

• on_double_click – A handler to be invoked when the user double clicks a row.

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

MIN_HEIGHT = 100

MIN_WIDTH = 100

2.3. Reference 101

Toga Documentation, Release 0.3.1

property data

The data source of the tree

Type
returns

property multiple_select

Does the table allow multiple rows to be selected?

property on_double_click

The callable function for when a node on the Tree is selected. The provided callback function has to accept
two arguments tree (Tree) and node (Node or None).

Return type
callable

property on_select

The callable function for when a node on the Tree is selected. The provided callback function has to accept
two arguments tree (Tree) and node (Node or None).

Return type
callable

property selection

The current selection of the table.

A value of None indicates no selection. If the tree allows multiple selection, returns a list of selected data
nodes. Otherwise, returns a single data node.

WebView

Table 34: Availability (Key)

macOS GTK Windows iOS Android Web

The Web View widget is used for displaying an embedded browser window within an application.

Both sites served by a web server and local content can be displayed. Due to security restrictions in the macOS backend
WKWebView, local content on macOS can only be loaded from a single directory, relative to the base URL, and not
from an absolute “file://” URL. As a workaround, it is possible to use a lightweight webserver instead.

Usage

import toga

web = toga.WebView(url='https://google.com')

102 Chapter 2. Community

file://

Toga Documentation, Release 0.3.1

Debugging

If you need to debug the HTML, JavaScript or CSS content of a view, you may want to use the “inspect element” feature
of the WebView. This is not be turned on by default on some platforms. To enable WebView debugging:

• macOS

Run the following at the terminal:

$ defaults write com.example.appname WebKitDeveloperExtras -bool true

substituting com.example.appname with the bundle ID for your app.

Reference

class toga.widgets.webview.WebView(id=None, style=None, factory=None, url=None, user_agent=None,
on_key_down=None, on_webview_load=None)

A widget to display and open html content.

Parameters
• id (str) – An identifier for this widget.

• style (Style) – An optional style object. If no style is provided then a new one will be
created for the widget.

• url (str) – The URL to start with.

• user_agent (str) – The user agent for the web view.

• on_key_down (callable) – The callback method for when a key is pressed within the web
view

2.3. Reference 103

Toga Documentation, Release 0.3.1

• on_webview_load (callable) – The callback method for when the webview loads (or
reloads).

Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

property dom

The current DOM.

Returns
The current DOM

Return type
str

async evaluate_javascript(javascript)
Evaluate a JavaScript expression, returning the result.

This is an asynchronous operation. The method will complete when the return value is available.

Parameters
javascript (str) – The javascript expression to evaluate.

invoke_javascript(javascript)
Invoke a JavaScript expression.

The result (if any) of the javascript is ignored.

No guarantee is provided that the javascript has completed execution when `invoke()` returns
Parameters
javascript (str) – The javascript expression to evaluate.

property on_key_down

The handler to invoke when the button is pressed.

Returns
The function that is called on button press.

Return type
callable

property on_webview_load

The handler to invoke when the webview finishes loading.

Returns
The function that is called when the webview finishes loading.

Return type
callable

set_content(root_url, content)
Set the content of the web view.

Parameters
• root_url (str) – The URL

104 Chapter 2. Community

Toga Documentation, Release 0.3.1

• content (str) – The new content

property url

The current URL.

Returns
The current URL

Return type
str

property user_agent

The user agent for the web view as a str.

Returns
The user agent

Return type
str

Widget

The abstract base class of all widgets. This class should not be be instantiated directly.

Table 35: Availability (Key)

macOS GTK Windows iOS Android Web

Reference

class toga.widgets.base.Widget(id=None, style=None)
Create a base Toga widget.

This is an abstract base class; it cannot be instantiated.

Parameters
• id – The ID for the widget.

• style – A style object. If no style is provided, a default style will be applied to the widget.

add(*children)
Add the provided widgets as children of this widget.

If a child widget already has a parent, it will be re-parented as a child of this widget. If the child widget is
already a child of this widget, there is no change.

Raises ValueError if this widget cannot have children.

Parameters
children – The widgets to add as children of this widget.

property app

The App to which this widget belongs.

When setting the app for a widget, all children of this widget will be recursively assigned to the same app.

Raises ValueError if the widget is already associated with another app.

2.3. Reference 105

Toga Documentation, Release 0.3.1

property can_have_children

Determine if the node can have children.

This does not resolve whether there actually are any children; it only confirms whether children are theo-
retically allowed.

property children

The children of this node. This always returns a list, even if the node is a leaf and cannot have children.

Returns
A list of the children for this widget.

clear()

Clear all children from this node.

Raises
ValueError – If this node is a leaf, and cannot have children.

property enabled

Is the widget currently enabled? i.e., can the user interact with the widget?

focus()

Give this widget the input focus.

This method is a no-op if the widget can’t accept focus. The ability of a widget to accept focus is platform-
dependent. In general, on desktop platforms you can focus any widget that can accept user input, while
on mobile platforms focus is limited to widgets that accept text input (i.e., widgets that cause the virtual
keyboard to appear).

property id

The unique identifier for the widget.

insert(index, child)
Insert a widget as a child of this widget.

If a child widget already has a parent, it will be re-parented as a child of this widget. If the child widget is
already a child of this widget, there is no change.

Raises ValueError if this node cannot have children.

Parameters
• index – The position in the list of children where the new widget should be added.

• child – The child to insert as a child of this node.

property parent

The parent of this node.

Returns
The parent of this node. Returns None if this node is the root node.

refresh()

Refresh the layout and appearance of the tree this node is contained in.

refresh_sublayouts()

remove(*children)
Remove the provided widgets as children of this node.

Any nominated child widget that is not a child of this widget will not have any change in parentage.

Raises ValueError if this widget cannot have children.

106 Chapter 2. Community

https://docs.python.org/3/library/exceptions.html#ValueError

Toga Documentation, Release 0.3.1

Parameters
children – The child nodes to remove.

property root

The root of the tree containing this node.

Returns
The root node. Returns self if this node is the root node.

property tab_index

The position of the widget in the focus chain for the window.

Note: This is a beta feature. The tab_index API may change in future.

property window

The window to which this widget belongs.

When setting the window for a widget, all children of this widget will be recursively assigned to the same
window.

2.3.4 Style

The Pack Style Engine

Toga’s default style engine, Pack, is a layout algorithm based around the idea of packing boxes inside boxes. Each
box specifies a direction for its children, and each child specifies how it will consume the available space - either as a
specific width, or as a proportion of the available width. Other properties exist to control color, text alignment and so
on.

It is similar in some ways to the CSS Flexbox algorithm; but dramatically simplified, as there is no allowance for
overflowing boxes.

Note: The string values defined here are the string literals that the Pack algorithm accepts. These values are also
pre-defined as Python constants in the toga.style.pack module with the same name; however, following Python
style, the constants use upper case. For example, the Python constant toga.style.pack.COLUMN evaluates as the
string literal "column".

Pack style properties

display

Values: pack | none

Initial value: pack
Used to define the how to display the element. A value of pack will apply the pack layout algorithm to this node and
its descendants. A value of none removes the element from the layout entirely. Space will be allocated for the element
as if it were there, but the element itself will not be visible.

2.3. Reference 107

Toga Documentation, Release 0.3.1

visibility

Values: hidden | visible

Initial value: visible
Used to define whether the element should be drawn. A value of visible means the element will be displayed. A
value of hidden removes the element from view, but allocates space for the element as if it were still in the layout.

Any children of a hidden element are implicitly removed from view.

If a previously hidden element is made visible, any children of the element with a visibility of hidden will remain
hidden. Any descendants of the hidden child will also remain hidden, regardless of their visibility.

direction

Values: row | column

Initial value: row
The packing direction for children of the box. A value of column indicates children will be stacked vertically, from
top to bottom. A value of row indicates children will be packed horizontally; left-to-right if text_direction is ltr,
or right-to-left if text_direction is rtl.

alignment

Values: top | bottom | left | right | center

Initial value: top if direction is row; left if direction is column

The alignment of children relative to the outside of the packed box.

If the box is a column box, only the values left, right and center are honored.

If the box is a row box, only the values top, bottom and center are honored.

If a value is provided, but the value isn’t honored, the alignment reverts to the default for the direction.

width

Values: <integer> | none

Initial value: none
Specify a fixed width for the box.

The final width for the box may be larger, if the children of the box cannot fit inside the specified space.

108 Chapter 2. Community

Toga Documentation, Release 0.3.1

height

Values: <integer> | none

Initial value: none
Specify a fixed height for the box.

The final height for the box may be larger, if the children of the box cannot fit inside the specified space.

flex

Values: <number>
Initial value: 0

A weighting that is used to compare this box with its siblings when allocating remaining space in a box.

Once fixed space allocations have been performed, this box will assume flex / (sum of all flex for all
siblings) of all remaining available space in the direction of the parent’s layout.

padding_top

padding_right

padding_bottom

padding_left

Values: <integer>
Initial value: 0
The amount of space to allocate between the edge of the box, and the edge of content in the box, on the top, right,
bottom and left sides, respectively.

padding

Values: <integer> or <tuple> of length 1-4

A shorthand for setting the top, right, bottom and left padding with a single declaration.

If 1 integer is provided, that value will be used as the padding for all sides.

If 2 integers are provided, the first value will be used as the padding for the top and bottom; the second will be used as
the value for the left and right.

If 3 integers are provided, the first value will be used as the top padding, the second for the left and right padding, and
the third for the bottom padding.

If 4 integers are provided, they will be used as the top, right, bottom and left padding, respectively.

2.3. Reference 109

Toga Documentation, Release 0.3.1

color

Values: <color>
Initial value: System default

Set the foreground color for the object being rendered.

Some objects may not use the value.

background_color

Values: <color> | transparent

Initial value: The platform default background color

Set the background color for the object being rendered.

Some objects may not use the value.

text_align

Values: left | right | center | justify

Initial value: left if text_direction is ltr; right if text_direction is rtl

Defines the alignment of text in the object being rendered.

text_direction

Values: rtl | ltr

Initial value: rtl
Defines the natural direction of horizontal content.

font_family

Values: system | serif | sans-serif | cursive | fantasy | monospace | <string>

Initial value: system
The font family to be used.

A value of system indicates that whatever is a system-appropriate font should be used.

A value of serif, sans-serif, cursive, fantasy, or monospace will use a system defined font that matches the
description (e.g.,”Times New Roman” for serif, “Courier New” for monospace).

Otherwise, any font name can be specified. If the font name cannot be resolved, the system font will be used.

110 Chapter 2. Community

Toga Documentation, Release 0.3.1

font_style

Values: normal | italic | oblique

Initial value: normal
The style of the font to be used.

font_variant

Values: normal | small_caps

Initial value: normal
The variant of the font to be used.

font_weight

Values: normal | bold

Initial value: normal
The weight of the font to be used.

font_size

Values: <integer>
Initial value: System default

The relationship between Pack and CSS

Pack aims to be a functional subset of CSS. Any Pack layout can be converted into an equivalent CSS layout. After
applying this conversion, the CSS layout should be considered a “reference implementation”. Any disagreement be-
tween the rendering of a converted Pack layout in a browser, and the layout produced by the Toga implementation of
Pack should be considered to be either a bug in Toga, or a bug in the mapping.

The mapping that can be used to establish the reference implementation is:

• The reference HTML layout document is rendered in no-quirks mode, with a default CSS stylesheet:

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8" />
<title>Pack layout testbed</title>
<style>
html, body {
height: 100%;

}
body {
overflow: hidden;
display: flex;

(continues on next page)

2.3. Reference 111

https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

Toga Documentation, Release 0.3.1

(continued from previous page)

margin: 0;
white-space: pre;

}
div {
display: flex;
white-space: pre;

}
</style>

</head>
<body></body>

</html>

• The root element of the Pack layout can be mapped to the <body> element of the HTML reference document.
The rendering area of the browser window becomes the view area that Pack will fill.

• All other elements in the DOM tree are mapped to <div> elements.

• The following Pack declarations can be mapped to equivalent CSS declarations:

Pack property CSS property
alignment:
top

align-items: start if direction == row; otherwise ignored.

alignment:
bottom

align-items: end if direction == row; otherwise ignored.

alignment:
left

align-items: start if direction == column; otherwise ignored.

alignment:
right

align-items: end if direction == column; otherwise ignored.

alignment:
center

align-items: center

direction:
<str>

flex-direction: <str>

display:
pack

display: flex

flex: <int> If direction = row and width is set, or direction = column and
height is set, ignore. Otherwise, flex: <int> 0 0.

font_size:
<int>

font-size: <int>pt

height:
<int>

height: <int>px

padding_top:
<int>

margin-top: <int>px

padding_bottom:
<int>

margin-bottom: <int>px

padding_left:
<int>

margin-left: <int>px

padding_right:
<int>

margin-right: <int>px

text_direction:
<str>

direction: <str>

width: <int> width: <int>px

112 Chapter 2. Community

Toga Documentation, Release 0.3.1

• All other Pack declarations should be used as-is as CSS declarations, with underscores being converted to dashes
(e.g., background_color becomes background-color).

2.4 Background

2.4.1 Why Toga?

Toga isn’t the world’s first widget toolkit - there are dozens of other options. So why build a new one?

Native widgets - not themes

Toga uses native system widgets, not themes. When you see a Toga app running, it doesn’t just look like a native app -
it is a native app. Applying an operating system-inspired theme over the top of a generic widget set is an easy way for
a developer to achieve a cross-platform goal, but it leaves the end user with the mess.

It’s easy to spot apps that have been built using themed widget sets - they’re the ones that don’t behave quite like any
other app. Widgets don’t look quite right, or there’s a menu bar on a window in a macOS app. Themes can get quite
close - but there are always tell-tale signs.

On top of that, native widgets are always faster than a themed generic widget. After all, you’re using native system
capability that has been tuned and optimized, not a drawing engine that’s been layered on top of a generic widget.

Abstract the broad concepts

It’s not enough to just look like a native app, though - you need to feel like a native app as well.

A “Quit” option under a “File” menu makes sense if you’re writing a Windows app - but it’s completely out of place if
you’re on macOS - the Quit option should be under the application menu.

And besides - why did the developer have to code the location of a Quit option anyway? Every app in the world has to
have a quit option, so why doesn’t the widget toolkit provide a quit option pre-installed, out of the box?

Although Toga uses 100% native system widgets, that doesn’t mean Toga is just a wrapper around system widgets.
Wherever possible, Toga attempts to abstract the broader concepts underpinning the construction of GUI apps, and
build an API for that. So - every Toga app has the basic set of menu options you’d expect of every app - Quit, About,
and so on - all in the places you’d expect to see them in a native app.

When it comes to widgets, sometimes the abstraction is simple - after all, a button is a button, no matter what platform
you’re on. But other widgets may not be exposed so literally. What the Toga API aims to expose is a set of mechanisms
for achieving UI goals, not a literal widget set.

Python native

Most widget toolkits start their life as a C or C++ layer, which is then wrapped by other languages. As a result, you end
up with APIs that taste like C or C++.

Toga has been designed from the ground up to be a Python native widget toolkit. This means the API is able to exploit
language level features like generators and context managers in a way that a wrapper around a C library wouldn’t be
able to (at least, not easily).

This also means supporting Python 3, and 3 only because that’s where the future of Python is at.

2.4. Background 113

Toga Documentation, Release 0.3.1

pip install and nothing more

Toga aims to be no more than a pip install away from use. It doesn’t require the compilation of C extensions. There’s
no need to install a binary support library. There’s no need to change system paths and environment variables. Just
install it, import it, and start writing (or running) code.

Embrace mobile

10 years ago, being a cross-platform widget toolkit meant being available for Windows, macOS and Linux. These days,
mobile computing is much more important. But despite this, there aren’t many good options for Python programming
on mobile platforms, and cross-platform mobile coding is still elusive. Toga aims to correct this.

2.4.2 Why “Toga”? Why the Yak?

So. . . why the name Toga?

We all know the aphorism that “When in Rome, do as the Romans do.”

So - what does a well dressed Roman wear? A toga, of course! And what does a well dressed Python app wear? Toga!

So. . . why the yak mascot?

It’s a reflection of the long running joke about yak shaving in computer programming. The story originally comes from
MIT, and is related to a Ren and Stimpy episode; over the years, the story has evolved, and now goes something like
this:

You want to borrow your neighbor’s hose so you can wash your car. But you remember that last week, you
broke their rake, so you need to go to the hardware store to buy a new one. But that means driving to the
hardware store, so you have to look for your keys. You eventually find your keys inside a tear in a cushion
- but you can’t leave the cushion torn, because the dog will destroy the cushion if they find a little tear. The
cushion needs a little more stuffing before it can be repaired, but it’s a special cushion filled with exotic
Tibetan yak hair.

The next thing you know, you’re standing on a hillside in Tibet shaving a yak. And all you wanted to do
was wash your car.

An easy to use widget toolkit is the yak standing in the way of progress of a number of BeeWare projects, and the
original creator of Toga has been tinkering with various widget toolkits for over 20 years, so the metaphor seemed
appropriate.

2.4.3 Success Stories

Want to see examples of Toga in use? Here’s some:

• Travel Tips is an app in the iOS App Store that uses Toga to describe it’s user interface.

• Eddington is a data fitting tool based on Toga and Briefcase

• taRpnCalcTG is a Toga based calculator for Android, Windows and MacOS which is extensible with Python
scripts.

• pyPlayground is a Toga based app for Android and Windows which can be modified to try Toga without additional
tool chain.

• taAppLister is a Toga based Android app for listing and exporting all installed apps.

114 Chapter 2. Community

https://en.wiktionary.org/wiki/when_in_Rome_do_as_the_Romans_do
https://en.wiktionary.org/wiki/yak_shaving
https://beeware.org/
https://apps.apple.com/au/app/travel-tips/id1336372310
https://github.com/EddLabs/eddington-gui
https://www.tanapro.ch/joomla3/index.php/downloads
https://www.tanapro.ch/joomla3/index.php/downloads
https://play.google.com/store/apps/details?id=ch.tanapro.taapplister

Toga Documentation, Release 0.3.1

• RemoteCommand is a Toga based app for synchronizing the clipboard between Windows and MacOS.

2.4.4 Release History

0.3.1 (2023-04-12)

Features

• The Button widget now has 100% test coverage, and complete API documentation. (#1761)

• The mapping between Pack layout and HTML/CSS has been formalized. (#1778)

• The Label widget now has 100% test coverage, and complete API documentation. (#1799)

• TextInput now supports focus handlers and changing alignment on GTK. (#1817)

• The ActivityIndicator widget now has 100% test coverage, and complete API documentation. (#1819)

• The Box widget now has 100% test coverage, and complete API documentation. (#1820)

• NumberInput now supports changing alignment on GTK. (#1821)

• The Divider widget now has 100% test coverage, and complete API documentation. (#1823)

• The ProgressBar widget now has 100% test coverage, and complete API documentation. (#1825)

• The Switch widget now has 100% test coverage, and complete API documentation. (#1832)

• Event handlers have been internally modified to simplify their definition and use on backends. (#1833)

• The base Toga Widget now has 100% test coverage, and complete API documentation. (#1834)

• Support for FreeBSD was added. (#1836)

• The Web backend now uses Shoelace to provide web components. (#1838)

• Winforms apps can now go full screen. (#1863)

Bugfixes

• Issues with reducing the size of windows on GTK have been resolved. (#1205)

• iOS now supports newlines in Labels. (#1501)

• The Slider widget now has 100% test coverage, and complete API documentation. (#1708)

• The GTK backend no longer raises a warning about the use of a deprecated set_wmclass API. (#1718)

• MultilineTextInput now correctly adapts to Dark Mode on macOS. (#1783)

• The handling of GTK layouts has been modified to reduce the frequency and increase the accuracy of layout
results. (#1794)

• The text alignment of MultilineTextInput on Android has been fixed to be TOP aligned. (#1808)

• GTK widgets that involve animation (such as Switch or ProgressBar) are now redrawn correctly. (#1826)

2.4. Background 115

https://www.tanapro.ch/joomla3/index.php/downloads
https://github.com/beeware/toga/issues/1761
https://github.com/beeware/toga/issues/1778
https://github.com/beeware/toga/issues/1799
https://github.com/beeware/toga/issues/1817
https://github.com/beeware/toga/issues/1819
https://github.com/beeware/toga/issues/1820
https://github.com/beeware/toga/issues/1821
https://github.com/beeware/toga/issues/1823
https://github.com/beeware/toga/issues/1825
https://github.com/beeware/toga/issues/1832
https://github.com/beeware/toga/issues/1833
https://github.com/beeware/toga/issues/1834
https://github.com/beeware/toga/issues/1836
https://github.com/beeware/toga/issues/1838
https://github.com/beeware/toga/issues/1863
https://github.com/beeware/toga/issues/1205
https://github.com/beeware/toga/issues/1501
https://github.com/beeware/toga/issues/1708
https://github.com/beeware/toga/issues/1718
https://github.com/beeware/toga/issues/1783
https://github.com/beeware/toga/issues/1794
https://github.com/beeware/toga/issues/1808
https://github.com/beeware/toga/issues/1826

Toga Documentation, Release 0.3.1

Improved Documentation

• API support tables now distinguish partial vs full support on each platform. (#1762)

• Some missing settings and constant values were added to the documentation of Pack. (#1786)

• Added documentation for toga.App.widgets. (#1852)

Misc

• #1750, #1764, #1765, #1766, #1770, #1771, #1777, #1797, #1802, #1813, #1818, #1822, #1829, #1830, #1835,
#1839, #1854, #1861

0.3.0 (2023-01-30)

Features

• Widgets now use a three-layered (Interface/Implementation/Native) structure.

• A GUI testing framework was added.

• A simplified “Pack” layout algorithm was added.

• Added a web backend.

Bugfixes

• Too many to count!

0.2.15

• Added more widgets and cross-platform support, especially for GTK+ and Winforms

0.2.14

• Removed use of namedtuple

0.2.13

• Various fixes in preparation for PyCon AU demo

116 Chapter 2. Community

https://github.com/beeware/toga/issues/1762
https://github.com/beeware/toga/issues/1786
https://github.com/beeware/toga/issues/1852
https://github.com/beeware/toga/issues/1750
https://github.com/beeware/toga/issues/1764
https://github.com/beeware/toga/issues/1765
https://github.com/beeware/toga/issues/1766
https://github.com/beeware/toga/issues/1770
https://github.com/beeware/toga/issues/1771
https://github.com/beeware/toga/issues/1777
https://github.com/beeware/toga/issues/1797
https://github.com/beeware/toga/issues/1802
https://github.com/beeware/toga/issues/1813
https://github.com/beeware/toga/issues/1818
https://github.com/beeware/toga/issues/1822
https://github.com/beeware/toga/issues/1829
https://github.com/beeware/toga/issues/1830
https://github.com/beeware/toga/issues/1835
https://github.com/beeware/toga/issues/1839
https://github.com/beeware/toga/issues/1854
https://github.com/beeware/toga/issues/1861

Toga Documentation, Release 0.3.1

0.2.12

• Migrated to CSS-based layout, rather than Cassowary/constraint layout.

• Added Windows backend

• Added Django backend

• Added Android backend

0.2.0 - 0.2.11

Internal development releases.

0.1.2

• Further improvements to multiple-repository packaging strategy.

• Ensure Ctrl-C is honored by apps.

• Cocoa: Added runtime warnings when minimum OS X version is not met.

0.1.1

• Refactored code into multiple repositories, so that users of one backend don’t have to carry the overhead of other
installed platforms

• Corrected a range of bugs, mostly related to problems under Python 3.

0.1.0

Initial public release. Includes:

• A Cocoa (OS X) backend

• A GTK+ backend

• A proof-of-concept Win32 backend

• A proof-of-concept iOS backend

2.4.5 Road Map

Toga is a new project - we have lots of things that we’d like to do. If you’d like to contribute, you can provide a patch
for one of these features.

2.4. Background 117

Toga Documentation, Release 0.3.1

Widgets

The core of Toga is its widget set. Modern GUI apps have lots of native controls that need to be represented. The
following widgets have no representation at present, and need to be added.

There’s also the task of porting widgets available on one platform to another platform.

Input

Inputs are mechanisms for displaying and editing input provided by the user.

• ComboBox - A free entry text field that provides options (e.g., text with past choices)

– Cocoa: NSComboBox

– GTK: Gtk.ComboBox.new_with_model_and_entry

– iOS: ?

– Winforms: ComboBox

– Android: Spinner

• DateTimeInput - A widget for selecting a date and a time.

– Cocoa: NSDatePicker

– GTK: Gtk.Calendar + ?

– iOS: UIDatePicker

– Winforms: DateTimePicker

– Android: ?

• ColorInput - A widget for selecting a color

– Cocoa: NSColorWell

– GTK: Gtk.ColorButton or Gtk.ColorSelection

– iOS: ?

– Winforms: ?

– Android: ?

• SearchInput - A variant of TextField that is decorated as a search box.

– Cocoa: NSSearchField

– GTK: Gtk.Entry

– iOS: UISearchBar?

– Winforms: ?

– Android: ?

118 Chapter 2. Community

Toga Documentation, Release 0.3.1

Views

Views are mechanisms for displaying rich content, usually in a read-only manner.

• VideoView - Display a video

– Cocoa: AVPlayerView

– GTK: Custom integration with GStreamer

– iOS: MPMoviePlayerController

– Winforms: ?

– Android: ?

• PDFView - Display a PDF document

– Cocoa: PDFView

– GTK: ?

– iOS: Integration with QuickLook?

– Winforms: ?

– Android: ?

• MapView - Display a map

– Cocoa: MKMapView

– GTK: Probably a Webkit.WebView pointing at Google Maps/OpenStreetMap

– iOS: MKMapView

– Winforms: ?

– Android: ?

Container widgets

Containers are widgets that can contain other widgets.

• ButtonContainer - A layout for a group of radio/checkbox options

– Cocoa: NSMatrix, or NSView with pre-set constraints.

– GTK: Gtk.ListBox

– iOS: ?

– Winforms: ?

– Android: ?

• FormContainer - A layout for a “key/value” or “label/widget” form

– Cocoa: NSForm, or NSView with pre-set constraints.

– GTK:

– iOS:

– Winforms: ?

– Android: ?

2.4. Background 119

Toga Documentation, Release 0.3.1

• NavigationContainer - A container view that holds a navigable tree of sub-views

Essentially a view that has a “back” button to return to the previous view in a hierarchy. Example of
use: Top level navigation in the macOS System Preferences panel.

– Cocoa: No native control

– GTK: No native control; Gtk.HeaderBar in 3.10+

– iOS: UINavigationBar + NavigationController

– Winforms: ?

– Android: ?

Miscellaneous

One of the aims of Toga is to provide a rich, feature-driven approach to app development. This requires the development
of APIs to support rich features.

• Preferences - Support for saving app preferences, and visualizing them in a platform native way.

• Notification when updates are available

• Easy Licensing/registration of apps - Monetization is not a bad thing, and shouldn’t be mutually exclusive with
open source.

Platforms

Toga currently has good support for Cocoa on macOS, GTK on Linux, Winforms on Windows, iOS and Android. Proof-
of-concept support exists for single page web apps. Support for a more modern Windows API would be desirable.

2.4.6 Architecture

Although Toga presents a single interface to the end user, there are three internal layers that make up every widget.
They are:

• The Interface layer

• The Implementation layer

• The Native layer

Interface

The interface layer is the public, documented interface for each widget. Following Toga’s design philosophy, these
widgets reflect high-level design concepts, rather than specific common widgets. It forms the public API for creating
apps, windows, widgets, and so on.

The interface layer is responsible for validation of any API inputs, and storage of any persistent values retained by
a widget. That storage may be supplemented or replaced by storage on the underlying native widget (or widgets),
depending on the capabilities of that widget.

The interface layer is also responsible for storing style and layout-related attributes of the widget.

The interface layer is defined in the toga-core module.

120 Chapter 2. Community

Toga Documentation, Release 0.3.1

Implementation

The implementation layer is the platform-specific representation of each widget. Each platform that Toga supports has
its own implementation layer, named after the widget toolkit that the implementation layer is wrapping – toga-cocoa
for macOS (Cocoa being the name of the underlying macOS widget toolkit); toga-gtk for Linux (using the GTK+
toolkit); and so on. The implementation provides a private, internal API that the interface layer can use to create the
widgets described by the interface layer.

The API exposed by the implementation layer is different to that exposed by the interface layer and is not intended for
end-user consumption. It is a utility API, servicing the requirements of the interface layer.

Every widget in the implementation layer corresponds to exactly one widget in the interface layer. However, the reverse
will not always be true. Some widgets defined by the interface layer are not available on all platforms.

An interface widget obtains its implementation when it is constructed, using the platform factory. Each platform
provides a factory implementation. When a Toga application starts, it guesses its platform based on the value of sys.
platform, and uses that factory to create implementation-layer widgets.

If you have an interface layer widget, the implementation widget can be obtained using the _impl attribute of that
widget.

Native

The lowest layer of Toga is the native layer. The native layer represents the widgets required by the widget toolkit of your
system. These are accessed using whatever bridging library or Python-native API is available on the implementation
platform. This layer is usually provided by system-level APIs, not by Toga itself.

Most implementation widgets will have a single native widget. However, when a platform doesn’t expose a single
widget that meets the requirements of the Toga interface specification, the implementation layer will use multiple
native widgets to provide the required functionality.

In this case, the implementation must provide a single “container” widget that represents the overall geometry of the
combined native widgets. This widget is called the “primary” native widget. When there’s only one native widget, the
native widget is the primary native widget.

If you have an implementation widget, the interface widget can be obtained using the interface attribute, and the
primary native widget using the native attribute.

If you have a native widget, the interface widget can be obtained using the interface attribute, and the implementation
widget using the impl attribute.

An example

Here’s how Toga’s three-layer API works on the Button widget.

• toga.Button is defined in core/src/toga/widgets/button.py. This defines the public interface for the
Button widget, describing (amongst other things) that there is an on_click event handler on a Button. It expects
that there will be an implementation, but doesn’t care which implementation is provided.

• toga-gtk.widgets.Button is defined in gtk/src/toga-gtk/widgets/button.py. This defines the But-
ton at the implementation layer. It describes how to create a button on GTK, and how to connect the GTK
clicked signal to the on_click Toga handler.

• Gtk.Button is the native GTK-Python widget API that implements buttons on GTK.

This three layered approach allows us to change the implementation of Button without changing the public API that
end-users rely upon. For example, we could switch out toga-gtk.widgets.Button with toga-cocoa.widgets.
Button to provide a macOS implementation of the Button without altering the API that end-users use to construct
buttons.

2.4. Background 121

Toga Documentation, Release 0.3.1

The layered approach is especially useful with more complex widgets. Every platform provides a Button widget,
but other widgets are more complex. For example, macOS doesn’t provide a native DetailedList view, so it must be
constructed out of a scroll view, a table view, and a collection of other pieces. The three layered architecture hides this
complexity - the API exposed to developers is a single (interface layer) widget; the complexity of the implementation
only matters to the maintainers of Toga.

Lastly, the layered approach provides a testing benefit. In addition to the Cocoa, GTK, and other platform imple-
mentations, there is a “dummy” implementation. This implementation satisfies all the API requirements of a Toga
implementation layer, but without actually performing any graphical operations. This dummy API can be used to test
code using the Toga interface layer.

2.4.7 Understanding widget layout

One of the major tasks of a GUI framework is to determine where each widget will be displayed within the application
window. This determination must be made when a window is initially displayed, and every time the window changes
size (or, on mobile devices, changes orientation).

Layout in Toga is performed using style engine. Toga provides a built-in style engine called Pack; however, other
style engines can be used. Every widget keeps a style object, and it is this style object that is used to perform layout
operations.

Each widget can also report an “intrinsic” size - this is the size of the widget, as reported by the underlying GUI library.
The intrinsic size is a width and height; each dimension can be fixed, or specified as a minimum. For example, a button
may have a fixed intrinsic height, but a minimum intrinsic width (indicating that there is a minimum size the button
can be, but it can stretch to assume any larger size). This intrinsic size is computed when the widget is first displayed;
if fundamental properties of the widget ever change (e.g., changing the text or font size on a button), the widget needs
to be rehinted, which re-calculates the intrinsic size, and invalidates any layout.

Widgets are constructed in a tree structure. The widget at the root of the tree is called the container widget. Every
widget keeps a reference to the container at the root of its widget tree.

When a widget is added to a window, a Viewport is created. This viewport connects the widget to the available space
provided by the window.

When a window needs to perform a layout, the layout engine asks the style object for the container to lay out its
contents with the space that the viewport has available. This will perform whatever calculations are required and apply
any position information to the widgets in the widget tree.

Every window has a container and viewport, representing the total viewable area of the window. However, some widgets
(called Container widgets) establish sub-containers. When a refresh is requested on a container, any sub-containers will
also be refreshed.

2.4.8 Commands, Menus and Toolbars

A GUI requires more than just widgets laid out in a user interface - you’ll also want to allow the user to actually do
something. In Toga, you do this using Commands.

A command encapsulates a piece of functionality that the user can invoke - no matter how they invoke it. It doesn’t
matter if they select a menu item, press a button on a toolbar, or use a key combination - the functionality is wrapped
up in a Command.

When a command is added to an application, Toga takes control of ensuring that the command is exposed to the user
in a way that they can access it. On desktop platforms, this may result in a command being added to a menu.

You can also choose to add a command (or commands) to a toolbar on a specific window.

122 Chapter 2. Community

Toga Documentation, Release 0.3.1

Defining Commands

When you specify a Command, you provide some additional metadata to help classify and organize the commands in
your application:

• An action - a function to invoke when the command is activated.

• A label - a name for the command to.

• A tooltip - a short description of what the command will do

• A shortcut - (optional) A key combination that can be used to invoke the command.

• An icon - (optional) A path to an icon resource to decorate the command.

• A group - (optional) a Group object describing a collection of similar commands. If no group is specified, a
default “Command” group will be used.

• A section - (optional) an integer providing a sub-grouping. If no section is specified, the command will be
allocated to section 0 within the group.

• An order - (optional) an integer indicating where a command falls within a section. If a Command doesn’t have
an order, it will be sorted alphabetically by label within its section.

Commands may not use all the metadata - for example, on some platforms, menus will contain icons; on other platforms
they won’t. Toga will use the metadata if it is provided, but ignore it (or substitute an appropriate default) if it isn’t.

Commands can be enabled and disabled; if you disable a command, it will automatically disable any toolbar or menu
item where the command appears.

Groups

Toga provides a number of ready-to-use groups:

• Group.APP - Application level control

• Group.FILE - File commands

• Group.EDIT - Editing commands

• Group.VIEW - Commands to alter the appearance of content

• Group.COMMANDS - A Default

• Group.WINDOW - Commands for managing different windows in the app

• Group.HELP - Help content

You can also define custom groups.

Example

The following is an example of using menus and commands:

import toga

def callback(sender):
print("Command activated")

def build(app):
...

(continues on next page)

2.4. Background 123

Toga Documentation, Release 0.3.1

(continued from previous page)

stuff_group = Group('Stuff', order=40)

cmd1 = toga.Command(
callback,
label='Example command',
tooltip='Tells you when it has been activated',
shortcut='k',
icon='icons/pretty.png',
group=stuff_group,
section=0

)
cmd2 = toga.Command(

...
)
...

app.commands.add(cmd1, cmd4, cmd3)
app.main_window.toolbar.add(cmd2, cmd3)

This code defines a command cmd1 that will be placed in the first section of the “Stuff” group. It can be activated by
pressing CTRL-k (or CMD-K on a Mac).

The definitions for cmd2, cmd3, and cmd4 have been omitted, but would follow a similar pattern.

It doesn’t matter what order you add commands to the app - the group, section and order will be used to put the
commands in the right order.

If a command is added to a toolbar, it will automatically be added to the app as well. It isn’t possible to have functionality
exposed on a toolbar that isn’t also exposed by the app. So, cmd2will be added to the app, even though it wasn’t explicitly
added to the app commands.

2.4.9 Data Sources

Most widgets in a user interface will need to interact with data - either displaying it, or providing a way to manipulate
it.

Well designed GUI applications will maintain a strong separation between the data, and how that data is displayed.
This separation allows developers to radically change how data is visualized without changing the underlying interface
for interacting with this data.

Toga encourages this separation by using data sources. Instead of directly telling a widget to display a particular value
(or collection of values), Toga requires you to define a data source, and then tell a widget to display that source.

Built-in data sources

There are three built-in data source types in Toga:

• Value Sources: For managing a single value. A Value has a single attribute, value, which is the value that will
be rendered for display purposes.

• List Sources: For managing a list of items, each of which has one or more values. List data sources support the
data manipulation methods you’d expect of a list, and return Row objects. The attributes of each Row object
are the values that should be displayed.

124 Chapter 2. Community

Toga Documentation, Release 0.3.1

• Tree Sources: For managing a hierarchy of items, each of which has one or more values. Tree data sources
also behave like a list, except that each item returned is a Node. The attributes of the Node are the values that
should be displayed; a Node also has children, accessible using the list interface on the Node.

Listeners

Data sources communicate to widgets (and other data sources) using a listener interface. Once a data source has been
created, any other object can register as a listener on that data source. When any significant event occurs to the data
source, all listeners will be notified.

Notable events include: * Adding a new item * Removing an existing item * Changing a value on an item * Clearing
an entire data source

If any attribute of a Value, Row or Node is modified, the source will generate a change event.

Custom data sources

Although Toga provides built-in data sources, in general, you shouldn’t use them. Toga’s data sources are wrappers
around Python’s primitive data types - int, str, list, dict, and so on. While this is useful for quick demonstrations, or to
visualize simple data, more complex applications should define their own data sources.

A custom data source enables you to provide a data manipulation API that makes sense for your application. For
example, if you were writing an application to display files on a file system, you shouldn’t just build a dictionary of
files, and use that to construct a TreeSource. Instead, you should write your own FileSystemSource that reflects
the files on the file system. Your file system data source doesn’t need to expose insert() or remove() methods
- because the end user doesn’t need an interface to “insert” files into your filesystem. However, you might have a
create_empty_file() method that creates a new file in the filesystem and adds a representation to the tree.

Custom data sources are also required to emit notifications whenever notable events occur. This allows the widgets
rendering the data source to respond to changes in data. If a data source doesn’t emit notifications, widgets may not
reflect changes in data.

Value sources

A Value source is any object with a “value” attribute.

List sources

List data sources need to provide the following methods:

• __len__(self) - returns the number of items in the list

• __getitem__(self, index) - returns the item at position index of the list.

Each item returned by the List source is required to expose attributes matching the accessors for any widget using the
source.

2.4. Background 125

Toga Documentation, Release 0.3.1

Tree sources

Tree data sources need to provide the following methods:

• __len__(self) - returns the number of root nodes in the tree

• __getitem__(self, index) - returns the root node at position index of the tree.

Each node returned by the Tree source is required to expose attributes matching the accessors for any widget using the
source. The node is also required to implement the following methods:

• __len__(self) - returns the number of children of the node.

• __getitem__(self, index) - returns the child at position index of the node.

• can_have_children(self) - returns True if the node is allowed to have children. The result of this method
does not depend on whether the node actually has any children; it only describes whether it is allowed to store
children.

126 Chapter 2. Community

PYTHON MODULE INDEX

t
toga.widgets.canvas, 72

127

Toga Documentation, Release 0.3.1

128 Python Module Index

INDEX

A
about() (toga.app.App method), 44
ActivityIndicator (class in

toga.widgets.activityindicator), 67
add() (toga.widgets.base.Widget method), 105
add() (toga.widgets.optioncontainer.OptionContainer

method), 55
add_background_task() (toga.app.App method), 44
add_column() (toga.widgets.table.Table method), 97
App (class in toga.app), 44
app (toga.app.App attribute), 45
APP (toga.command.Group attribute), 63
app (toga.widgets.base.Widget property), 105
app (toga.widgets.optioncontainer.OptionContainer

property), 55
app (toga.widgets.scrollcontainer.ScrollContainer prop-

erty), 57
app (toga.widgets.splitcontainer.SplitContainer prop-

erty), 60
app (toga.window.Window property), 49
app_id (toga.app.App property), 45
app_name (toga.app.App property), 45
Arc (class in toga.widgets.canvas), 72
arc() (toga.widgets.canvas.Context method), 73
as_image() (toga.widgets.canvas.Canvas method), 70
author (toga.app.App property), 45

B
bezier_curve_to() (toga.widgets.canvas.Context

method), 73
BezierCurveTo (class in toga.widgets.canvas), 72
bind() (toga.command.Command method), 62
bind() (toga.fonts.Font method), 61
bind() (toga.icons.Icon method), 65
bind() (toga.images.Image method), 66
Box (class in toga.widgets.box), 53
Button (class in toga.widgets.button), 68

C
can_have_children (toga.widgets.base.Widget prop-

erty), 106
Canvas (class in toga.widgets.canvas), 70

canvas (toga.widgets.canvas.Context property), 73
children (toga.widgets.base.Widget property), 106
clear() (toga.widgets.base.Widget method), 106
clear() (toga.widgets.canvas.Context method), 73
clear() (toga.widgets.multilinetextinput.MultilineTextInput

method), 85
clear() (toga.widgets.textinput.TextInput method), 99
close() (toga.window.Window method), 49
closed_path() (toga.widgets.canvas.Context method),

73
ClosedPath (class in toga.widgets.canvas), 72
color (toga.widgets.canvas.Fill property), 77
color (toga.widgets.canvas.Stroke property), 78
Command (class in toga.command), 62
COMMANDS (toga.command.Group attribute), 63
confirm_dialog() (toga.window.Window method), 49
content (toga.widgets.optioncontainer.OptionContainer

property), 55
content (toga.widgets.scrollcontainer.ScrollContainer

property), 57
content (toga.widgets.splitcontainer.SplitContainer

property), 60
content (toga.window.Window property), 49
Context (class in toga.widgets.canvas), 72
context() (toga.widgets.canvas.Context method), 74
current_tab (toga.widgets.optioncontainer.OptionContainer

property), 55
current_window (toga.app.App property), 45

D
data (toga.widgets.detailedlist.DetailedList property), 80
data (toga.widgets.table.Table property), 97
data (toga.widgets.tree.Tree property), 101
DEFAULT_ICON (toga.icons.Icon attribute), 65
description (toga.app.App property), 45
DetailedList (class in toga.widgets.detailedlist), 79
direction (toga.widgets.divider.Divider property), 82
direction (toga.widgets.splitcontainer.SplitContainer

property), 60
Divider (class in toga.widgets.divider), 82
dom (toga.widgets.webview.WebView property), 104

129

Toga Documentation, Release 0.3.1

E
EDIT (toga.command.Group attribute), 63
Ellipse (class in toga.widgets.canvas), 76
ellipse() (toga.widgets.canvas.Context method), 74
enabled (toga.command.Command property), 62
enabled (toga.widgets.activityindicator.ActivityIndicator

property), 67
enabled (toga.widgets.base.Widget property), 106
enabled (toga.widgets.box.Box property), 53
enabled (toga.widgets.divider.Divider property), 82
enabled (toga.widgets.progressbar.ProgressBar prop-

erty), 90
error_dialog() (toga.window.Window method), 49
evaluate_javascript()

(toga.widgets.webview.WebView method),
104

EVENODD (toga.widgets.canvas.FillRule attribute), 77
exit() (toga.app.App method), 45
exit_full_screen() (toga.app.App method), 45

F
FILE (toga.command.Group attribute), 63
Fill (class in toga.widgets.canvas), 76
fill() (toga.widgets.canvas.Context method), 74
fill_rule (toga.widgets.canvas.Fill property), 77
FillRule (class in toga.widgets.canvas), 77
focus() (toga.widgets.activityindicator.ActivityIndicator

method), 67
focus() (toga.widgets.base.Widget method), 106
focus() (toga.widgets.box.Box method), 53
focus() (toga.widgets.divider.Divider method), 82
focus() (toga.widgets.label.Label method), 84
Font (class in toga.fonts), 61
formal_name (toga.app.App property), 45
full_screen (toga.window.Window property), 49

G
Group (class in toga.command), 63

H
HELP (toga.command.Group attribute), 63
hide() (toga.window.Window method), 50
hide_cursor() (toga.app.App method), 45
home_page (toga.app.App property), 45
HORIZONTAL (toga.widgets.divider.Divider attribute), 82
horizontal (toga.widgets.scrollcontainer.ScrollContainer

property), 57
HORIZONTAL (toga.widgets.splitcontainer.SplitContainer

attribute), 60
horizontal_position

(toga.widgets.scrollcontainer.ScrollContainer
property), 57

I
Icon (class in toga.icons), 65
icon (toga.app.App property), 45
icon (toga.command.Command property), 63
id (toga.app.App property), 46
id (toga.widgets.base.Widget property), 106
id (toga.window.Window property), 50
Image (class in toga.images), 65
image (toga.widgets.imageview.ImageView property), 83
ImageView (class in toga.widgets.imageview), 83
info_dialog() (toga.window.Window method), 50
insert() (toga.widgets.base.Widget method), 106
insert() (toga.widgets.optioncontainer.OptionContainer

method), 55
invoke_javascript()

(toga.widgets.webview.WebView method),
104

is_child_of() (toga.command.Group method), 63
is_determinate (toga.widgets.progressbar.ProgressBar

property), 90
is_full_screen (toga.app.App property), 46
is_parent_of() (toga.command.Group method), 63
is_running (toga.widgets.activityindicator.ActivityIndicator

property), 67
is_running (toga.widgets.progressbar.ProgressBar

property), 90
is_valid (toga.widgets.textinput.TextInput property), 99
items (toga.widgets.selection.Selection property), 91

K
key (toga.command.Command property), 63
key (toga.command.Group property), 64

L
Label (class in toga.widgets.label), 84
label (toga.command.Command property), 63
label (toga.command.Group property), 64
line_to() (toga.widgets.canvas.Context method), 74
LineTo (class in toga.widgets.canvas), 77

M
main_loop() (toga.app.App method), 46
main_window (toga.app.App property), 46
MainWindow (class in toga.app), 47
max (toga.widgets.progressbar.ProgressBar property), 90
max (toga.widgets.slider.Slider property), 93
max_value (toga.widgets.numberinput.NumberInput

property), 87
measure() (toga.fonts.Font method), 61
measure_text() (toga.widgets.canvas.Canvas method),

70
min (toga.widgets.slider.Slider property), 93

130 Index

Toga Documentation, Release 0.3.1

MIN_HEIGHT (toga.widgets.detailedlist.DetailedList at-
tribute), 80

MIN_HEIGHT (toga.widgets.multilinetextinput.MultilineTextInput
attribute), 85

MIN_HEIGHT (toga.widgets.scrollcontainer.ScrollContainer
attribute), 57

MIN_HEIGHT (toga.widgets.tree.Tree attribute), 101
min_value (toga.widgets.numberinput.NumberInput

property), 87
MIN_WIDTH (toga.widgets.detailedlist.DetailedList

attribute), 80
MIN_WIDTH (toga.widgets.multilinetextinput.MultilineTextInput

attribute), 85
MIN_WIDTH (toga.widgets.scrollcontainer.ScrollContainer

attribute), 57
MIN_WIDTH (toga.widgets.textinput.TextInput attribute),

99
MIN_WIDTH (toga.widgets.tree.Tree attribute), 101
missing_value (toga.widgets.table.Table property), 97
module

toga.widgets.canvas, 72
module_name (toga.app.App property), 46
move_to() (toga.widgets.canvas.Context method), 75
MoveTo (class in toga.widgets.canvas), 77
MultilineTextInput (class in

toga.widgets.multilinetextinput), 85
multiple_select (toga.widgets.table.Table property),

97
multiple_select (toga.widgets.tree.Tree property), 102

N
name (toga.app.App property), 46
new_path() (toga.widgets.canvas.Context method), 75
NewPath (class in toga.widgets.canvas), 77
NONZERO (toga.widgets.canvas.FillRule attribute), 77
NumberInput (class in toga.widgets.numberinput), 86

O
on_alt_drag (toga.widgets.canvas.Canvas property), 70
on_alt_press (toga.widgets.canvas.Canvas property),

70
on_alt_release (toga.widgets.canvas.Canvas prop-

erty), 71
on_change (toga.widgets.multilinetextinput.MultilineTextInput

property), 85
on_change (toga.widgets.numberinput.NumberInput

property), 87
on_change (toga.widgets.slider.Slider property), 93
on_change (toga.widgets.switch.Switch property), 95
on_change (toga.widgets.textinput.TextInput property),

99
on_close (toga.app.MainWindow property), 47
on_close (toga.window.Window property), 50

on_delete (toga.widgets.detailedlist.DetailedList prop-
erty), 80

on_double_click (toga.widgets.table.Table property),
97

on_double_click (toga.widgets.tree.Tree property), 102
on_drag (toga.widgets.canvas.Canvas property), 71
on_exit (toga.app.App property), 46
on_gain_focus (toga.widgets.textinput.TextInput prop-

erty), 99
on_key_down (toga.widgets.webview.WebView prop-

erty), 104
on_lose_focus (toga.widgets.textinput.TextInput prop-

erty), 100
on_press (toga.widgets.button.Button property), 68
on_press (toga.widgets.canvas.Canvas property), 71
on_press (toga.widgets.slider.Slider property), 93
on_refresh (toga.widgets.detailedlist.DetailedList prop-

erty), 80
on_release (toga.widgets.canvas.Canvas property), 71
on_release (toga.widgets.slider.Slider property), 93
on_resize (toga.widgets.canvas.Canvas property), 71
on_scroll (toga.widgets.scrollcontainer.ScrollContainer

property), 57
on_select (toga.widgets.detailedlist.DetailedList prop-

erty), 80
on_select (toga.widgets.optioncontainer.OptionContainer

property), 55
on_select (toga.widgets.selection.Selection property),

91
on_select (toga.widgets.table.Table property), 97
on_select (toga.widgets.tree.Tree property), 102
on_webview_load (toga.widgets.webview.WebView

property), 104
open_file_dialog() (toga.window.Window method),

50
OptionContainer (class in

toga.widgets.optioncontainer), 54
OptionContainer.OptionException, 55

P
parent (toga.command.Group property), 64
parent (toga.widgets.base.Widget property), 106
PasswordInput (class in toga.widgets.passwordinput),

88
path (toga.command.Group property), 64
placeholder (toga.widgets.multilinetextinput.MultilineTextInput

property), 85
placeholder (toga.widgets.textinput.TextInput prop-

erty), 100
position (toga.window.Window property), 50
ProgressBar (class in toga.widgets.progressbar), 89

Q
quadratic_curve_to() (toga.widgets.canvas.Context

Index 131

Toga Documentation, Release 0.3.1

method), 75
QuadraticCurveTo (class in toga.widgets.canvas), 77
question_dialog() (toga.window.Window method), 50

R
range (toga.widgets.slider.Slider property), 93
readonly (toga.widgets.multilinetextinput.MultilineTextInput

property), 85
readonly (toga.widgets.numberinput.NumberInput prop-

erty), 87
readonly (toga.widgets.textinput.TextInput property),

100
Rect (class in toga.widgets.canvas), 77
rect() (toga.widgets.canvas.Context method), 75
redraw() (toga.widgets.canvas.Context method), 75
refresh() (toga.widgets.base.Widget method), 106
refresh_sublayouts() (toga.widgets.base.Widget

method), 106
refresh_sublayouts()

(toga.widgets.optioncontainer.OptionContainer
method), 55

refresh_sublayouts()
(toga.widgets.scrollcontainer.ScrollContainer
method), 57

refresh_sublayouts()
(toga.widgets.splitcontainer.SplitContainer
method), 60

register() (toga.fonts.Font static method), 61
registered_font_key() (toga.fonts.Font static

method), 62
remove() (toga.widgets.base.Widget method), 106
remove() (toga.widgets.canvas.Context method), 75
remove() (toga.widgets.optioncontainer.OptionContainer

method), 55
remove_column() (toga.widgets.table.Table method), 98
reset_transform() (toga.widgets.canvas.Canvas

method), 71
ResetTransform (class in toga.widgets.canvas), 78
root (toga.command.Group property), 64
root (toga.widgets.base.Widget property), 107
Rotate (class in toga.widgets.canvas), 78
rotate() (toga.widgets.canvas.Canvas method), 71

S
save() (toga.images.Image method), 66
save_file_dialog() (toga.window.Window method),

51
Scale (class in toga.widgets.canvas), 78
scale() (toga.widgets.canvas.Canvas method), 71
scroll_to_bottom() (toga.widgets.detailedlist.DetailedList

method), 81
scroll_to_bottom() (toga.widgets.multilinetextinput.MultilineTextInput

method), 85

scroll_to_bottom() (toga.widgets.table.Table
method), 98

scroll_to_row() (toga.widgets.detailedlist.DetailedList
method), 81

scroll_to_row() (toga.widgets.table.Table method), 98
scroll_to_top() (toga.widgets.detailedlist.DetailedList

method), 81
scroll_to_top() (toga.widgets.multilinetextinput.MultilineTextInput

method), 85
scroll_to_top() (toga.widgets.table.Table method), 98
ScrollContainer (class in

toga.widgets.scrollcontainer), 57
select_folder_dialog() (toga.window.Window

method), 51
Selection (class in toga.widgets.selection), 91
selection (toga.widgets.detailedlist.DetailedList prop-

erty), 81
selection (toga.widgets.table.Table property), 98
selection (toga.widgets.tree.Tree property), 102
set_content() (toga.widgets.webview.WebView

method), 104
set_full_screen() (toga.app.App method), 46
show() (toga.window.Window method), 51
show_cursor() (toga.app.App method), 46
size (toga.window.Window property), 51
Slider (class in toga.widgets.slider), 92
SplitContainer (class in toga.widgets.splitcontainer),

60
stack_trace_dialog() (toga.window.Window

method), 52
start() (toga.widgets.activityindicator.ActivityIndicator

method), 67
start() (toga.widgets.progressbar.ProgressBar

method), 90
startup() (toga.app.App method), 46
step (toga.widgets.numberinput.NumberInput property),

87
stop() (toga.widgets.activityindicator.ActivityIndicator

method), 67
stop() (toga.widgets.progressbar.ProgressBar method),

90
Stroke (class in toga.widgets.canvas), 78
stroke() (toga.widgets.canvas.Context method), 75
Switch (class in toga.widgets.switch), 95

T
tab_index (toga.widgets.base.Widget property), 107
Table (class in toga.widgets.table), 96
text (toga.widgets.button.Button property), 68
text (toga.widgets.label.Label property), 84
text (toga.widgets.switch.Switch property), 95
TextInput (class in toga.widgets.textinput), 99
tick_count (toga.widgets.slider.Slider property), 93
tick_step (toga.widgets.slider.Slider property), 93

132 Index

Toga Documentation, Release 0.3.1

tick_value (toga.widgets.slider.Slider property), 93
title (toga.window.Window property), 52
toga.widgets.canvas

module, 72
TOGA_ICON (toga.icons.Icon attribute), 65
toggle() (toga.widgets.switch.Switch method), 95
toolbar (toga.window.Window property), 52
Translate (class in toga.widgets.canvas), 78
translate() (toga.widgets.canvas.Canvas method), 71
Tree (class in toga.widgets.tree), 101

U
url (toga.widgets.webview.WebView property), 105
user_agent (toga.widgets.webview.WebView property),

105

V
validate() (toga.widgets.textinput.TextInput method),

100
validators (toga.widgets.textinput.TextInput property),

100
value (toga.widgets.multilinetextinput.MultilineTextInput

property), 86
value (toga.widgets.numberinput.NumberInput prop-

erty), 87
value (toga.widgets.progressbar.ProgressBar property),

90
value (toga.widgets.selection.Selection property), 91
value (toga.widgets.slider.Slider property), 94
value (toga.widgets.switch.Switch property), 95
value (toga.widgets.textinput.TextInput property), 100
version (toga.app.App property), 47
VERTICAL (toga.widgets.divider.Divider attribute), 82
vertical (toga.widgets.scrollcontainer.ScrollContainer

property), 57
VERTICAL (toga.widgets.splitcontainer.SplitContainer at-

tribute), 60
vertical_position (toga.widgets.scrollcontainer.ScrollContainer

property), 58
VIEW (toga.command.Group attribute), 63
visible (toga.window.Window property), 52
visit_homepage() (toga.app.App method), 47

W
WebView (class in toga.widgets.webview), 103
Widget (class in toga.widgets.base), 105
widgets (toga.app.App property), 47
Window (class in toga.window), 48
WINDOW (toga.command.Group attribute), 63
window (toga.widgets.base.Widget property), 107
window (toga.widgets.optioncontainer.OptionContainer

property), 55
window (toga.widgets.scrollcontainer.ScrollContainer

property), 58

window (toga.widgets.splitcontainer.SplitContainer prop-
erty), 60

write_text() (toga.widgets.canvas.Context method),
76

WriteText (class in toga.widgets.canvas), 79

Index 133

	Table of contents
	Tutorial
	How-to guides
	Background
	Reference

	Community
	Tutorials
	Your first Toga app
	Set up your development environment
	Write the app
	Running the app
	Troubleshooting issues

	A slightly less toy example
	You put the box inside another box…
	Let’s build a browser!
	Let’s draw on a canvas!
	Tutorial 0 - your first Toga app
	Tutorial 1 - a slightly less toy example
	Tutorial 2 - you put the box inside another box…
	Tutorial 3 - let’s build a browser!
	Tutorial 4 - let’s draw on a canvas!

	How-to Guides
	How to get started
	Quickstart

	How to contribute code to Toga
	Set up your development environment
	What should I do?
	Add change information for release notes

	It’s not just about coverage!
	What next?
	Advanced Mode

	Contributing to the documentation
	Create a .rst file
	Build documentation locally
	Documentation linting
	Rebuilding all documentation

	Internal How-to guides
	How to cut a Toga release

	Reference
	Toga supported platforms
	Official platform support
	Desktop platforms
	macOS
	Linux
	Windows

	Mobile platforms
	iOS
	Android

	Web
	The Dummy platform

	Planned platform support
	Unofficial platform support

	Toga APIs by platform
	Key
	Core Components
	General Widgets
	Layout Widgets
	Resources

	API Reference
	Core application components
	General widgets
	Layout widgets
	Resources
	Application
	Usage
	Reference

	MainWindow
	Usage
	Reference

	Window
	Usage
	Reference

	Containers
	Box
	Usage
	Reference
	Option Container
	Usage
	Reference
	Scroll Container
	Usage
	Scroll settings
	Reference
	Split Container
	Usage
	Setting split direction
	Reference

	Resources
	Font
	Reference
	Command
	Usage
	Reference
	Group
	Usage
	Reference
	Icon
	Usage
	Reference
	Image
	Usage
	Reference

	Widgets
	Activity Indicator
	Usage
	Notes
	Reference
	Button
	Usage
	Notes
	Reference
	Canvas
	Usage
	Reference
	Main Interface
	Lower-Level Classes
	DetailedList
	Usage
	Reference
	Divider
	Usage
	Reference
	Image View
	Usage
	Reference
	Label
	Usage
	Notes
	Reference
	Multi-line text input
	Usage
	Reference
	Number Input
	Usage
	Reference
	PasswordInput
	Usage
	Reference
	Progress Bar
	Usage
	Notes
	Reference
	Selection
	Usage
	Reference
	Slider
	Usage
	Reference
	Switch
	Usage
	Notes
	Reference
	Table
	Usage
	Reference
	Text Input
	Usage
	Reference
	Tree
	Usage
	Reference
	WebView
	Usage
	Debugging
	Reference
	Widget
	Reference

	Style
	The Pack Style Engine
	Pack style properties
	display
	visibility
	direction
	alignment
	width
	height
	flex
	padding_top
	padding_right
	padding_bottom
	padding_left
	padding
	color
	background_color
	text_align
	text_direction
	font_family
	font_style
	font_variant
	font_weight
	font_size

	The relationship between Pack and CSS

	Background
	Why Toga?
	Native widgets - not themes
	Abstract the broad concepts
	Python native
	pip install and nothing more
	Embrace mobile

	Why “Toga”? Why the Yak?
	So… why the name Toga?
	So… why the yak mascot?

	Success Stories
	Release History
	0.3.1 (2023-04-12)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.0 (2023-01-30)
	Features
	Bugfixes

	0.2.15
	0.2.14
	0.2.13
	0.2.12
	0.2.0 - 0.2.11
	0.1.2
	0.1.1
	0.1.0

	Road Map
	Widgets
	Input
	Views
	Container widgets
	Miscellaneous

	Platforms

	Architecture
	Interface
	Implementation
	Native
	An example

	Understanding widget layout
	Commands, Menus and Toolbars
	Defining Commands
	Groups
	Example

	Data Sources
	Built-in data sources
	Listeners

	Custom data sources
	Value sources
	List sources
	Tree sources

	Python Module Index
	Index

