
Toga Documentation
Release 0.2.13

Russell Keith-Magee

Aug 01, 2017

Contents

1 Quickstart 3
1.1 Getting Started . 3

2 Community 5

3 Contents 7
3.1 Why Toga? . 7
3.2 Tutorials . 9
3.3 Widget Reference . 20
3.4 Toga internals . 24

i

ii

Toga Documentation, Release 0.2.13

Toga is a Python native, OS native, cross platform GUI toolkit. Toga consists of a library of base components with a
shared interface to simplify platform-agnostic GUI development.

Toga is available on Mac OS, Windows, Linux (GTK), and mobile platforms such as Android and iOS.

Contents 1

Toga Documentation, Release 0.2.13

2 Contents

CHAPTER 1

Quickstart

In your virtualenv, install Toga, and then run it:

$ pip install toga-demo
$ toga-demo

This will pop up a GUI window showing the full range of widgets available to an application using Toga.

Getting Started

To get started, you can dive into our Tutorials or check out the widget Reference.

Prerequisites

Toga has some minimum requirements:

• If you’re on OS X, you need to be on 10.7 (Lion) or newer.

• If you’re on Linux, you need to have GTK+ 3.4 or later. This is the version that ships with Ubuntu 12.04; you’ll
need to have the python3-gi package installed. If you want to use the WebView widget, you’ll also need to
have WebKit, plus the GI bindings to WebKit (gir1.2-webkit-3.0) installed.

If these requirements aren’t met, Toga either won’t work at all, or won’t have full functionality.

3

Toga Documentation, Release 0.2.13

4 Chapter 1. Quickstart

CHAPTER 2

Community

Toga is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• pybee/general on Gitter

5

http://pybee.org
https://twitter.com/pybeeware
https://gitter.im/pybee/general

Toga Documentation, Release 0.2.13

6 Chapter 2. Community

CHAPTER 3

Contents

Why Toga?

Toga isn’t the world’s first widget toolkit - there are dozens of other options. So why build a new one?

Native widgets - not themes

Toga uses native system widgets, not themes. When you see a Toga app running, it doesn’t just look like a native app
- it is a native app. Applying an operating system-inspired theme over the top of a generic widget set is an easy way
for a developer to achieve a cross-platform goal, but it leaves the end user with the mess.

It’s easy to spot apps that have been built using themed widget sets - they’re the ones that don’t behave quite like any
other app. Widgets don’t look quite right, or there’s a menu bar on a window in an OS X app. Themes can get quite
close - but there are always telltale signs.

On top of that, native widgets are always faster than a themed generic widget. After all, you’re using native system
capability that has been tuned and optimized, not a drawing engine that’s been layered on top of a generic widget.

Abstract the broad concepts

It’s not enough to just look like a native app, though - you need to feel like a native app as well.

A “Quit” option under a “File” menu makes sense if you’re writing a Windows app - but it’s completely out of place
if you’re on OS X - the Quit option should be under the application menu.

And besides - why did the developer have to code the location of a Quit option anyway? Every app in the world has to
have a quit option, so why doesn’t the widget toolkit provide a quit option pre-installed, out of the box?

Although Toga uses 100% native system widgets, that doesn’t mean Toga is just a wrapper around system widgets.
Wherever possible, Toga attempts to abstract the broader concepts underpinning the construction of GUI apps, and
build an API for that. So - every Toga app has the basic set of menu options you’d expect of every app - Quit, About,
and so on - all in the places you’d expect to see them in a native app.

7

Toga Documentation, Release 0.2.13

When it comes to widgets, sometimes the abstraction is simple - after all, a button is a button, no matter what platform
you’re on. But other widgets may not be exposed so literally. What the Toga API aims to expose is a set of mechanisms
for achieving UI goals, not a literal widget set.

Python native

Most widget toolkits start their life as a C or C++ layer, which is then wrapped by other languages. As a result, you
end up with APIs that taste like C or C++.

Toga has been designed from the ground up to be a Python native widget toolkit. This means the API is able to exploit
language level features like generators and context managers in a way that a wrapper around a C library wouldn’t be
able to (at least, not easily).

This also means supporting Python 3, and 3 only because that’s where the future of Python is at.

pip install and nothing more

Toga aims to be no more than a pip install away from use. It doesn’t require the compilation of C extensions. There’s
no need to install a binary support library. There’s no need to change system paths and environment variables. Just
install it, import it, and start writing (or running) code.

Embrace mobile

10 years ago, being a cross-platform widget toolkit meant being available for Windows, OS X and Linux. These days,
mobile computing is much more important. But despite this, there aren’t many good options for Python programming
on mobile platforms, and cross-platform mobile coding is still elusive. Toga aims to correct this.

So... why the name Toga?

We all know the aphorism that “When in Rome, do as the Romans do.”

So - what does a well dressed Roman wear? A toga, of course! And what does a well dressed Python app wear? Toga!

So... why the yak mascot?

It’s a reflection of the long running joke about yak shaving in computer programming. The story originally comes
from MIT, and is related to a Ren and Stimpy episode; over the years, the story has evolved, and now goes something
like this:

You want to borrow your neighbours hose so you can wash your car. But you remember that last week,
you broke their rake, so you need to go to the hardware store to buy a new one. But that means driving
to the hardware store, so you have to look for your keys. You eventually find your keys inside a tear in a
cushion - but you can’t leave the cushion torn, because the dog will destroy the cushion if they find a little
tear. The cushion needs a little more stuffing before it can be repaired, but it’s a special cushion filled with
exotic Tibetan yak hair.

The next thing you know, you’re standing on a hillside in Tibet shaving a yak. And all you wanted to do
was wash your car.

An easy to use widget toolkit is the yak standing in the way of progress of a number of PyBee projects, and the original
creator of Toga has been tinkering with various widget toolkits for over 20 years, so the metaphor seemed appropriate.

8 Chapter 3. Contents

http://en.wiktionary.org/wiki/when_in_Rome_do_as_the_Romans_do
http://en.wiktionary.org/wiki/yak_shaving
http://pybee.org

Toga Documentation, Release 0.2.13

Let’s get started!

Enough theory (and bad puns...) - let’s get started with your first Toga app!

Tutorials

Tutorial 0

In Your first Toga app, you will discover how to create a basic app and have a simple toga.interface.widgets.
button.Button widget to click.

Tutorial 1

In A slightly less toy example, you will discover how to capture basic user input using the toga.interface.
widgets.textinput.TextInput widget and control layout.

Tutorial 2

In You put the box inside another box..., you will discover how to use the toga.interface.widgets.
splitcontainer.SplitContainer widget to display some components, a toolbar and a table.

3.2. Tutorials 9

Toga Documentation, Release 0.2.13

Tutorial 3

In Let’s build a browser!, you will discover how to use the toga.interface.widgets.webview.WebView
widget to display a simple browser.

Index

Your first Toga app

In this example, we’re going to build a desktop app with a single button, that prints to the console when you press the
button.

Here’s a complete code listing for our “Hello world” app:

import toga

def button_handler(widget):
print("hello")

10 Chapter 3. Contents

Toga Documentation, Release 0.2.13

def build(app):
box = toga.Box()

button = toga.Button('Hello world', on_press=button_handler)
button.style.set(margin=50)
box.add(button)

return box

def main():
return toga.App('First App', 'org.pybee.helloworld', startup=build)

if __name__ == '__main__':
main().main_loop()

Lets walk through this one line at a time.

The code starts with imports. First, we import toga:

import toga

Then, we set up a handler - a wrapper around behavior that we want to activate when the button is pressed. A handler
is just a function. The function takes the widget that was activated as the first argument; depending on the type of
event that is being handled, other arguments may also be provided. In the case of a simple button press, however, there
are no extra arguments:

def button_handler(widget):
print("hello")

By creating an app, we’re declaring that we want to have a main window, with a main menu. However, Toga doesn’t
know what content we want in that main window. The next step is to define a method that describes the UI that we
want our app to have. This method is a callable that accepts an app instance:

def build(app):

We want to put a button in the window. However, unless we want the button to fill the entire app window, we can’t just
put the button into the app window. Instead, we need create a box, and put the button in the box.

A box is an object that can be used to hold multiple widgets, and to define padding around widgets. So, we define a
box:

box = toga.Box()

We can then define a button. When we create the button, we can set the button text, and we also set the behavior that
we want to invoke when the button is pressed, referencing the handler that we defined earlier:

button = toga.Button('Hello world', on_press=button_handler)

Now we have to define how the button will appear in the window. Toga uses a CSS-based layout scheme, so we can
apply CSS styles to each widget:

button.style.set(margin=50)

Each widget is a “block” in CSS terms, what we’ve done here is say that the button with have a margin of 50 pixels on
each side. If we wanted to define a margin of 20 pixels on top of the button, we could have defined margin_top=20,
or we could have specified the margin=(20, 50, 50, 50).

3.2. Tutorials 11

Toga Documentation, Release 0.2.13

The next step is to add the button to the box:

box.add(button)

The button will, by default, stretch to the size of the box it is placed in. The outer box is also a block, which will
stretch to the size of box it is placed in - which, in our case, is the window itself. The button has a default height,
defined by the way that the underlying platform draws buttons). As a result, this means we’ll see a single button in the
app window that stretches to the width of the screen, but has a 50 pixel margin surrounding it.

Now we’ve set up the box, we return the outer box that holds all the UI content. This box will be the content of the
app’s main window:

return box

Lastly, we instantiate the app itself. The app is a high level container representing the executable. The app has a name,
and a unique identifier. The identifier is used when registering any app-specific system resources. By convention, the
identifier is a “reversed domain name”. The app also accepts our callable defining the main window contents. We
wrap this creation process into a method called main, which returns a new instance of our application:

def main():
return toga.App('First App', 'org.pybee.helloworld', startup=build)

The entry point for the project then needs to instantiate this entry point, and start the main app loop. The call to
main_loop() is a blocking call; it won’t return until you quit the main app:

if __name__ == '__main__':
main().main_loop()

And that’s it! Save this script as helloworld.py, and you’re ready to go.

Running the app

Before you run the app, you’ll need to install toga. Although you can install toga by just running:

$ pip install toga

We strongly suggest that you don’t do this. We’d suggest creating a virtual environment first, and installing toga in
that virtual environment.

Note: Minimum versions

Toga has some minimum requirements:

• If you’re on OS X, you need to be on 10.7 (Lion) or newer.

• If you’re on Linux, you need to have GTK+ 3.4 or later. This is the version that ships starting with Ubuntu 12.04
and Fedora 17.

• If you want to use the WebView widget, you’ll also need to have WebKit, plus the GI bindings to WebKit
installed.

– For Ubuntu that’s provided by the libwebkitgtk-3.0-0 and gir1.2-webkit-3.0 packages.

– For Fedora it’s all provided in the webkitgtk3 package.

If these requirements aren’t met, Toga either won’t work at all, or won’t have full functionality.

Once you’ve got toga installed, you can run your script:

12 Chapter 3. Contents

http://docs.python-guide.org/en/latest/dev/virtualenvs/

Toga Documentation, Release 0.2.13

$ python -m helloworld

Note: python -m helloworld vs python helloworld.py

Note the -m flag and absence of the .py extension in this command line. If you run python helloworld.py,
you may see some errors like:

NotImplementedError: Application does not define open_document()

Toga apps must be executed as modules - hence the -m flag.

This should pop up a window with a button:

If you click on the button, you should see messages appear in the console. Even though we didn’t define anything
about menus, the app will have default menu entries to quit the app, and an About page. The keyboard bindings to quit
the app, plus the “close” button on the window will also work as expected. The app will have a default Toga icon (a
picture of Tiberius the yak).

3.2. Tutorials 13

Toga Documentation, Release 0.2.13

A slightly less toy example

Most applications require a little more than a button on a page. Lets build a slightly more complex example - a
Fahrenheit to Celsius converter:

Here’s the source code:

import toga

def build(app):
c_box = toga.Box()
f_box = toga.Box()
box = toga.Box()

c_input = toga.TextInput(readonly=True)
f_input = toga.TextInput()

c_label = toga.Label('Celsius', alignment=toga.LEFT_ALIGNED)
f_label = toga.Label('Fahrenheit', alignment=toga.LEFT_ALIGNED)
join_label = toga.Label('is equivalent to', alignment=toga.RIGHT_ALIGNED)

def calculate(widget):
try:

c_input.value = (float(f_input.value) - 32.0) * 5.0 / 9.0
except:

c_input.value = '???'

button = toga.Button('Calculate', on_press=calculate)

f_box.add(f_input)
f_box.add(f_label)

c_box.add(join_label)
c_box.add(c_input)
c_box.add(c_label)

box.add(f_box)
box.add(c_box)
box.add(button)

box.style.set(flex_direction='column', padding_top=10)
f_box.style.set(flex_direction='row', margin=5)

14 Chapter 3. Contents

Toga Documentation, Release 0.2.13

c_box.style.set(flex_direction='row', margin=5)

c_input.style.set(flex=1)
f_input.style.set(flex=1, margin_left=160)
c_label.style.set(width=100, margin_left=10)
f_label.style.set(width=100, margin_left=10)
join_label.style.set(width=150, margin_right=10)

button.style.set(margin=15)

return box

def main():
return toga.App('Temperature Converter', 'org.pybee.f_to_c', startup=build)

if __name__ == '__main__':
main().main_loop()

This example shows off the use of Flexbox in Toga’s CSS styling. Flexbox is a new layout scheme that is part of the
CSS3 specification that corrects the problems with the older box layout scheme in CSS2. Flexbox is not yet universally
available in all web browsers, but that doesn’t matter for Toga - Toga provides an implemention of the Flexbox layout
scheme. CSS-tricks provides a good tutorial on Flexbox if you’ve never come across it before.

In this example app, we’ve set up an outer box that stacks vertically; inside that box, we’ve put 2 horizontal boxes and
a button.

Since there’s no width styling on the horizontal boxes, they’ll try to fit the widgets the contain into the available
space. The TextInput widgets have a style of flex=1, but the Label widgets have a fixed width; as a result, the
TextInput widgets will be stretched to fit the available horizontal space. The margin and padding terms then ensure
that the widgets will be aligned vertically and horizontally.

You put the box inside another box...

If you’ve done any GUI programming before, you will know that one of the biggest problems that any widget toolkit
solves is how to put widgets on the screen in the right place. Different widget toolkits use different approaches -
constraints, packing models, and grid-based models are all common. Toga uses an approach that is new for widget
toolkits, but well proven in computing: Cascading Style Sheets, (CSS).

If you’ve done any design for the web, you will have come across CSS before as the mechanism that you use to lay out
HTML on a web page. Although this is the reason CSS was developed, CSS itself is a general set of rules for laying
out any “boxes” that are structured in a tree-like heirarchy. GUI widgets are an example of one such structure.

To see how this works in practice, lets look at a more complex example, involving layouts, scrollers, and containers
inside other containers.:

3.2. Tutorials 15

https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Toga Documentation, Release 0.2.13

Here’s the source code

import toga
from colosseum import CSS

def button_handler(widget):
print('button handler')
for i in range(0, 10):

print("hello", i)
yield 1

print("done", i)

def action0(widget):
print("action 0")

def action1(widget):
print("action 1")

16 Chapter 3. Contents

Toga Documentation, Release 0.2.13

def action2(widget):
print("action 2")

def action3(widget):
print("action 3")

def build(app):
left_container = toga.Table(['Hello', 'World'])

left_container.insert(None, 'root1', 'value1')
left_container.insert(None, 'root2', 'value2')
left_container.insert(None, 'root3', 'value3')
left_container.insert(1, 'root4', 'value4')

for i in range(0, 100):
left_container.insert(None, 'root%s' % (i+5), 'value%s' % (i+5))

right_content = toga.Box(
style=CSS(flex_direction='column', padding_top=50)

)

for b in range(0, 10):
right_content.add(

toga.Button(
'Hello world %s' % b,
on_press=button_handler,
style=CSS(width=200, margin=20)

)
)

right_container = toga.ScrollContainer(horizontal=False)

right_container.content = right_content

split = toga.SplitContainer()

split.content = [left_container, right_container]

things = toga.Group('Things')

cmd0 = toga.Command(
action1,
label='Action 0',
tooltip='Perform action 0',
icon='icons/brutus.icns',
group=things

)
cmd1 = toga.Command(

action1,
label='Action 1',
tooltip='Perform action 1',
icon='icons/brutus.icns',
group=things

)
cmd2 = toga.Command(

3.2. Tutorials 17

Toga Documentation, Release 0.2.13

action2,
label='Action 2',
tooltip='Perform action 2',
icon=toga.TIBERIUS_ICON,
group=things

)
cmd3 = toga.Command(

action3,
label='Action 3',
tooltip='Perform action 3',
shortcut='k',
icon='icons/cricket-72.png'

)

def action4(widget):
print ("CALLING Action 4")
cmd3.enabled = not cmd3.enabled

cmd4 = toga.Command(
action4,
label='Action 4',
tooltip='Perform action 4',
icon='icons/brutus.icns'

)

app.commands.add(cmd1, cmd3, cmd4, cmd0)
app.main_window.toolbar.add(cmd1, cmd2, cmd3, cmd4)

return split

def main():
return toga.App('First App', 'org.pybee.helloworld', startup=build)

if __name__ == '__main__':
main().main_loop()

Here are the Icons

In this example, we see a couple of new Toga widgets - Table, SplitContainer, and ScrollContainer.
You can also see that CSS styles can be added in the widget constructor. Lastly, you can see that windows can have
toolbars.

Let’s build a browser!

Although it’s possible to build complex GUI layouts, you can get a lot of functionality with very little code, utilizing
the rich components that are native on modern platforms.

So - lets build a tool that lets our pet yak graze the web - a primitive web browser, in less than 40 lines of code!

18 Chapter 3. Contents

Toga Documentation, Release 0.2.13

Here’s the source code:

#!/usr/bin/env python

import toga
from colosseum import CSS

class Graze(toga.App):
def startup(self):

self.main_window = toga.MainWindow(self.name)
self.main_window.app = self

self.webview = toga.WebView(style=CSS(flex=1))
self.url_input = toga.TextInput(

initial='https://github.com/',
style=CSS(flex=1, margin=5)

)

box = toga.Box(
children = [

toga.Box(
children = [

self.url_input,

3.2. Tutorials 19

Toga Documentation, Release 0.2.13

toga.Button('Go', on_press=self.load_page,
→˓style=CSS(width=50)),

],
style=CSS(

flex_direction='row'
)

),
self.webview,

],
style=CSS(

flex_direction='column'
)

)

self.main_window.content = box
self.webview.url = self.url_input.value

Show the main window
self.main_window.show()

def load_page(self, widget):
self.webview.url = self.url_input.value

if __name__ == '__main__':
app = Graze('Graze', 'org.pybee.graze')

app.main_loop()

In this example, you can see an application being developed as a class, rather than as a build method. You can also see
boxes defined in a declarative manner - if you don’t need to retain a reference to a particular widget, you can define a
widget inline, and pass it as an argument to a box, and it will become a child of that box.

Widget Reference

Core Widgets

Toga includes a set of core widgets, that can be placed with a Box Container.

Compo-
nent

Usage Purpose Class

Application Documenta-
tion

Primary host for UI
components

toga.interface.app.App

Box Documenta-
tion

Container for components toga.interface.widgets.box.Box

Font Documenta-
tion

Fonts toga.interface.font.Font

Widget Documenta-
tion

Base class for widgets toga.interface.widgets.base.
Widget

Window Documenta-
tion

Window object toga.interface.window.Window

20 Chapter 3. Contents

Toga Documentation, Release 0.2.13

General widgets

Component Usage Purpose Class
Button Documen-

tation
Basic clickable
button

toga.interface.widgets.button.Button

Image View Documen-
tation

Image Viewer toga.interface.widgets.imageview.
ImageView

Label Documen-
tation

Text label toga.interface.widgets.label.Label

Multiline
Text Input

Documen-
tation

Multi-line Text
Input field

toga.interface.widgets.
multilinetextinput.MultilineTextInput

Number
Input

Documen-
tation

Number Input
field

toga.interface.widgets.numberinput.
NumberInput

Option
Container

Documen-
tation

Option Container toga.interface.widgets.optioncontainer.
OptionContainer

Progress Bar Documen-
tation

Progress Bar toga.interface.widgets.progressbar.
ProgressBar

Selection Documen-
tation

Selection toga.interface.widgets.selection.
Selection

Text Input Documen-
tation

Text Input field toga.interface.widgets.textinput.
TextInput

Table Documen-
tation

Table of data toga.interface.widgets.table.Table

Tree Documen-
tation

Tree of data toga.interface.widgets.tree.Tree

Layout widgets

Component Usage Purpose Class
Scroll
Container

Documen-
tation

Scrollable
Container

toga.interface.widgets.scrollcontainer.
ScrollContainer

Split
Container

Documen-
tation

Split Container toga.interface.widgets.splitcontainer.
SplitContainer

Web View Documen-
tation

Web View toga.interface.widgets.webview.WebView

3.3. Widget Reference 21

Toga Documentation, Release 0.2.13

22 Chapter 3. Contents

Toga Documentation, Release 0.2.13

Supported Platforms

Component iOS win32 web django co-
coa

gtk an-
droid

toga.interface.widgets.optioncontainer.
OptionContainer

toga.interface.widgets.numberinput.
NumberInput

toga.interface.widgets.textinput.
TextInput

toga.interface.widgets.progressbar.
ProgressBar

toga.interface.font.Font

toga.interface.widgets.box.Box

Image

EXPANDING_SPACER

toga.interface.widgets.passwordinput.
PasswordInput

toga.interface.widgets.scrollcontainer.
ScrollContainer

toga.interface.widgets.splitcontainer.
SplitContainer

toga.interface.widgets.imageview.
ImageView

toga.interface.widgets.webview.WebView

toga.interface.widgets.
multilinetextinput.MultilineTextInput

TIBERIUS_ICON

Command

toga.interface.widgets.box.Box

toga.interface.widgets.selection.
Selection

toga.interface.widgets.table.Table

toga.interface.widgets.box.Box

toga.interface.app.App

toga.interface.window.Window

toga.interface.widgets.tree.Tree

SEPARATOR

toga.interface.widgets.label.Label

toga.interface.window.Window

SPACER

3.3. Widget Reference 23

Toga Documentation, Release 0.2.13

Toga internals

Contributing to Toga

If you experience problems with Toga, log them on GitHub. If you want to contribute code, please fork the code and
submit a pull request.

Setting up your development environment

The recommended way of setting up your development envrionment for Toga is to install a virtual environment, install
the required dependencies and start coding. Assuming that you are using virtualenvwrapper, you only have to
run:

$ git clone git@github.com:pybee/toga.git
$ cd toga
$ mkvirtualenv toga

Note: Toga doesn’t have a test suite yet. The high level plan is two add two types of tests to the project:

1. Tests verifying that the core of Toga (contained in src/core/ – the abstract widgets – actually do what they
are supposed to do.

2. Tests for each backend.

To get started, run the following commands within your virtual environment (ensure that you’re using Python 3.4 or
better):

$ pip install -e src/core -e .

The somewhat odd command is required because the main Toga package is a sort of “metapackage” which pulls other
parts in; if you just do:

$ pip install -e . # Don't do this on its own

it will install the dependencies – like toga_core – from released versions into your site packages, instead of using
the sources.

Now you are ready to start hacking on the core of toga!

Of course, if you want to work on any specific platform, you need to do the same for it:

$ pip install -e src/core -e src/gtk -e .

Have fun!

Release History

0.2.12

• Migrated to CSS-based layout, rather than Cassowary/constraint layout.

• Added Windows backend

• Added Django backend

24 Chapter 3. Contents

https://github.com/pybee/toga/issues
https://github.com/pybee/toga
https://github.com/pybee/toga/pulls

Toga Documentation, Release 0.2.13

• Added Android backend

0.2.0 - 0.2.11

Internal Development releases.

0.1.2

• Further improvements to multiple-repository packaging strategy.

• Ensure Ctrl-C is honored by apps.

• Cocoa: Added runtime warnings when minimum OS X version is not met.

0.1.1

• Refactored code into multiple repositories, so that users of one backend don’t have to carry the overhead of other
installed platforms

• Corrected a range of bugs, mostly related to problems under Python 3.

0.1.0

Initial public release. Includes:

• A Cocoa (OS X) backend

• A GTK+ backend

• A proof-of-concept Win32 backend

• A proof-of-concept iOS backend

Toga Roadmap

Toga is a new project - we have lots of things that we’d like to do. If you’d like to contribute, providing a patch for one
of these features.

Widgets

The core of Toga is it’s widget set. Modern GUI apps have lots of native controls that need to be represented. The
following widgets have no representation at present, and need to be added.

There’s also the task of porting widgets available on one platform to another platform.

Input

Inputs are mechanisms for displaying and editing input provided by the user.

• ComboBox - A free entry TextField that provides options (e.g., text with past choices) - Cocoa: NSCom-
boBox - GTK+: Gtk.ComboBox.new_with_model_and_entry - iOS: ?

• Switch - A native control for enabled/disabled

3.4. Toga internals 25

Toga Documentation, Release 0.2.13

– Cocoa: Done

– GTK+: Gtk.CheckButton (maybe Gtk.Switch?)

– iOS: UISwitch

• DateInput - A widget for selecting a date

– Cocoa: NSDatePicker, constrained to DMY

– GTK+: Gtk.Calendar?

– iOS: UIDatePicker

• TimeInput - A widget for selecting a time

– Cocoa: NSDatePicker, Constrained to Time

– GTK+: ?

– iOS: UIDatePicker

• DateTimeInput - A widget for selecting a date and a time.

– Cocoa: NSDatePicker

– GTK+: Gtk.Calendar + ?

– iOS: UIDatePicker

• MultilineTextInput - A widget for displaying multiline text, optionally editable. - Cocoa: NSTextView in-
side an NSScrollView - GTK+: Gtk.TextView? (is there a simpler version than a full text editor?) - iOS:
UITextView

• Selection - A button that allows the user to choose from one of a fixed number of options - Cocoa: NSPop-
upButton, with NSMenu for options. - GTK+: Gtk.ComboBox.new_with_model - iOS: UIPickerView

• ColorInput - A widget for selecting a color

– Cocoa: NSColorWell

– GTK+: Gtk.ColorButton

– iOS: ?

• SliderInput (H & V) - A widget for selecting a value from a range.

– Cocoa: NSSlider

– GTK+: Gtk.Scale

– iOS: UISlider

• NumberInput - A widget to allow entry of a numerical value, possibly with helper buttons to make it easy
to increase/decrease the value. - Cocoa: NSTextField with NSStepper - GTK+: GTKSpinButton - iOS:
UITextField with UIStepper

• Table: A scrollable display of columns of tabular data

– Cocoa: Done

– GTK+: Gtk.TreeView with a Gtk.ListStore

– iOS: UITableView

• Tree: A scrollable display of heirarchical data

– Cocoa: Done

– GTK+: Gtk.TreeView with a Gtk.TreeStore

26 Chapter 3. Contents

Toga Documentation, Release 0.2.13

– iOS: UITableView with navigation

• DetailedList: A scrollable list of a single column of detailed data

– Cocoa: NSTableView with custom view?

– iOS: UITableView with navigation

• SearchInput - A variant of TextField that is decorated as a search box.

– Cocoa: NSSearchField

– GTK+: ?

– iOS: UISearchBar?

Views

Views are mechanisms for displaying rich content, usually in a readonly manner.

• Separator - a visual separator; usually a faint line.

– Cocoa: NSSeparator

– GTK+:

– iOS:

• ProgressBar - A horizontal bar that displays progress, either progress against a known value, or indeter-
miniate - Cocoa: Done - GTK+: Gtk.ProgressBar - iOS: UIProgressView

• ActivityIndicator - A spinner widget showing that something is happening

– Cocoa: NSProgressIndicator, Spinning style

– GTK+: Gtk.Spinner

– iOS: UIActivityIndicatorView

• ImageView - Display an graphical image

– Cocoa: Done

– GTK+: Gtk.Image

– iOS: UIImageView

• VideoView - Display a video

– Cocoa: AVPlayerView

– GTK+: Custom Integrate with GStreamer

– iOS: MPMoviePlayerController

• WebView - Display a web page. Just the web page; no URL chrome, etc.

– Cocoa: Done

– GTK+: Webkit.WebView (via WebkitGtk)

– iOS: UIWebView

• PDFView - Display a PDF document

– Cocoa: PDFView

– GTK+: ?

3.4. Toga internals 27

Toga Documentation, Release 0.2.13

– iOS: ? Integration with QuickLook?

• MapView - Display a map

– Cocoa: MKMapView

– GTK+: Probably a Webkit.WebView pointing at Google Maps/OpenStreetMap.org

– iOS: MKMapView

Container widgets

Containers are widgets that can contain other widgets.

• Box - A box drawn around a collection of widgets; often has a label

– Cocoa: NSBox

– GTK+:

– iOS:

• ButtonContainer - A layout for a group of radio/checkbox options

– Cocoa: NSMatrix, or NSView with pre-set constraints.

– GTK+: ListBox?

– iOS:

• ScrollContainer - A container whose internal content can be scrolled.

– Cocoa: Done

– GTK+:

– iOS: UIScrollView?

• SplitContainer - An adjustable separator bar between 2+ visible panes of content

– Cocoa: Done

– GTK+:

– iOS:

• FormContainer - A layout for a “key/value” or “label/widget” form

– Cocoa: NSForm, or NSView with pre-set constraints.

– GTK+:

– iOS:

• OptionContainer - (suggestions for better name welcome) A container view that holds a small, fixed num-
ber of subviews, only one of which is visible at any given time. Generally rendered as something with
“lozenge” style buttons over a box. Examples of use: OS X System preference panes that contain multiple
options (e.g., Keyboard settings have an option layout for “Keyboard”, “Text”, “Shortcuts” and “Input
sources”) - Cocoa: Done - GTK+: GtkNotebook (Maybe GtkStack on 3.10+?) - iOS: ?

• SectionContainer - (suggestions for better name welcome) A container view that holds a small number of
subviews, only one of which is visible at any given time. Each “section” has a name and icon. Examples
of use: top level navigation in Safari’s preferences panel. - Cocoa: NSTabView - GTK+: ? - iOS: ?

• TabContainer - A container view for holding an unknown number of subviews, each of which is of the
same type - e.g., web browser tabs. - Cocoa: ? - GTK+: GtkNotebook - iOS: ?

28 Chapter 3. Contents

Toga Documentation, Release 0.2.13

• NavigationContainer - A container view that holds a navigable tree of subviews; essentially a view that
has a “back” button to return to the previous view in a heirarchy. Example of use: Top level naviga-
tion in the OS X System Preferences panel. - Cocoa: No native control - GTK+: No native control;
Gtk.HeaderBar in 3.10+ - iOS: UINavigationBar + NavigationController

Dialogs and windows

GUIs aren’t all about widgets - sometimes you need to pop up a dialog to query the user.

• Info - a modal dialog providing an “OK” option

– Cocoa: Done

– GTK+: Gtk.MessageDialog, type Gtk.MessageType.INFO, buttons Gtk.ButtonsType.OK

– iOS:

• Error - a modal dialog showing an error, and a continue option.

– Cocoa: Done

– GTK+: Gtk.MessageDialog, type Gtk.MessageType.ERROR, buttons Gtk.ButtonsType.CANCEL

– iOS:

• Question - a modal dialog that asks a Yes/No question

– Cocoa: Done

– GTK+: Gtk.MessageDialog, type Gtk.MessageType.QUESTION, buttons
Gtk.ButtonsType.YES_NO

– iOS:

• Confirm - a modal dialog confirming “OK” or “cancel”

– Cocoa: Done

– GTK+: Gtk.MessageDialog, type Gtk.MessageType.WARNING, buttons
Gtk.ButtonsType.OK_CANCEL

– iOS:

• StackTrace - a modal dialog for displaying a long stack trace.

– Cocoa: Done

– GTK+: Custom Gtk.Dialog

– iOS:

• File Open - a mechanism for finding and specifying a file on disk.

– Cocoa:

– GTK+: Gtk.FileChooserDialog

– iOS:

• File Save - a mechanism for finding and specifying a filename to save to.

– Cocoa: Done

– GTK+:

– iOS:

3.4. Toga internals 29

Toga Documentation, Release 0.2.13

Miscellaneous

One of the aims of Toga is to provide a rich, feature-driven approach to app development. This requires the develop-
ment of APIs to support rich features.

• Long running tasks - GUI toolkits have a common pattern of needing to periodically update a GUI based on
some long running background task. They usually accomplish this with some sort of timer-based API to ensure
that the main event loop keeps running. Python has a “yield” keyword that can be prepurposed for this.

• Toolbar - support for adding a toolbar to an app definition. Interpretation in mobile will be difficult; maybe
some sort of top level action menu available via a slideout tray (e.g., GMail account selection tray)

• Preferences - support for saving app preferences, and visualizing them in a platform native way.

• Easy handling of long running tasks - possibly using generators to yield control back to the event loop.

• Notification when updates are available

• Easy Licening/registration of apps. Monetization is not a bad thing, and shouldn’t be mutually exclusive with
open source.

Platforms

Toga currently has good support for Cocoa on OS X, GTK+, and iOS. Proof-of-concept support exists for Windows
Win32. Support for a more modern Windows API would be desirable.

In the mobile space, it would be great if Toga supported Android, Windows Phone, or any other phone platform.

Toga supported plaforms

Official platform support

Desktop platforms

30 Chapter 3. Contents

Toga Documentation, Release 0.2.13

OS X

The backend for OS X is named toga-cocoa. It supports OS X 10.7 (Lion) and later. It is installed automatically on
OS X machines (machines that report sys.platform == 'darwin'), or can be manually installed by invoking:

$ pip install toga[cocoa]

The OS X backend has seen the most development to date.

3.4. Toga internals 31

http://github.com/pybee/toga-cocoa

Toga Documentation, Release 0.2.13

Linux

The backend for Linux platforms is named toga-gtk. It supports GTK+ 3.4 and later. It is installed automatically on
Linux machines (machines that report sys.platform == 'linux'), or can be manually installed by invoking:

$ pip install toga[gtk]

The GTK+ backend is reasonably well developed, but currently has some known issues with widget layout.

Win32

The backend for Windows is named toga-win32. It supports Windows XP or later. It is installed automatically
on Windows machines (machines that report sys.platform == 'win32'), or can be manually installed by
invoking:

$ pip install toga[win32]

32 Chapter 3. Contents

http://github.com/pybee/toga-gtk
http://github.com/pybee/toga-win32

Toga Documentation, Release 0.2.13

The Windows backend is currently proof-of-concept only. Most widgets have not been implemented.

Mobile platforms

iOS

The backend for iOS is named toga-iOS. It supports iOS 6 or later. It must be manually installed into an iOS Python
project (such as one that has been developed using the Python-iOS-template cookiecutter). It can be manually installed
by invoking:

$ pip install toga[iOS]

The iOS backend is currently proof-of-concept only. Most widgets have not been implemented.

Planned platform support

There are plans to provide support for the following platforms:

• Web (using Batavia to run Python on the browser)

• Android

• WinRT (Native Windows 8 and Windows mobile)

• Qt (for KDE based desktops)

If you are interested in these platforms and would like to contribute, please get in touch on Twitter or Gitter.

Unofficial platform support

At present, there are no known unofficial platform backends.

3.4. Toga internals 33

http://github.com/pybee/toga-iOS
http://github.com/pybee/Python-iOS-template
https://github.com/pybee/batavia
https://twitter.com/pybeeware
https://gitter.im/pybee/general

	Quickstart
	Getting Started

	Community
	Contents
	Why Toga?
	Tutorials
	Widget Reference
	Toga internals

